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ABSTRACT

The random set approach to multitarget tracking is a theoretically sound framework that covers joint estimation
of the number of targets and the state of the targets. This paper describes a particle filter implementation of
the random set multitarget filter. The contribution of this paper to the random set tracking framework is the
formulation of a measurement model where each sensor report is assumed to contain at most one measurement.
The implemented filter was tested in synthetic bearings-only tracking scenarios containing up to two targets in
the presence of false alarms and missed measurements. The estimated target state consisted of 2D position and
velocity components. The filter was capable to track the targets fairly well despite of the missing measurements
and the relatively high false alarm rates. In addition, the filter showed robustness against wrong parameter
values of false alarm rates. The results that were obtained during the limited tests of the filter show that the
random set framework has potential for challenging tracking situations. On the other hand, the computational
burden of the described implementation is quite high and increases approximately linearly with respect to the
expected number of targets.
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1. INTRODUCTION

Many modern multitarget tracking algorithms are based on more or less separate association, filtering and track
initiation algorithms. Challenging tracking situations may be hard to tackle by the conventional heuristics-
based track initiation methods. The theory of finite random sets provides a solid mathematical basis for the
multitarget estimation.1 In brief, the random set approach formulates the whole multitarget tracking problem as
one Bayesian estimation problem. The random set approach is, as many top-down strategies are, computationally
challenging. Recently, there has been several publications that describe sequential Monte Carlo approximations
of the random set filtering problem.2, 3

This paper introduces a sensor model for such a sensor that includes at most one measurement per report.
The reports are assumed to arrive irregularly, and they are processed sequentially. The presented sensor model is
a bit different than the general sensor model suggested by Mahler.4 Mahler suggests that the whole sensor suite
is reconceptualised as a single “meta-sensor”. In the model suggested in this paper, the sensors are asynchronous,
and assumed to operate independent of each other. This is the situation, for example, if the sensors are connected
to the fusion centre via an unknown delay and unreliable network connection.

2. THE RANDOM SET TRACKING MODEL

The multiple target tracking problem can be modelled in a very flexible and natural fashion with random sets.
The unknown estimated multitarget state Xk is a random set∗ consisting of unknown and varying number of
targets. Similarly, the measurements can be modelled as unknown-cardinality random sets Y k. Quite often, as
well as in this paper, the state evolution X0:∞ is modelled as a Markov chain. That is, the model is completely
described by the Markov transition kernel, i.e. the conditional probability P (Xk | Xk−1). In this paper, the
measurements Y 1:∞ are allowed to depend on the multitarget state sequence at one instantaneous time, and
are assumed to be conditionally independent. In this case, the conditional probability P (Y k | Xk) describes

Further author information: E-mail: matti.vihola@datactica.fi
∗In this paper, random elements are denoted with boldface letters. Uppercase letters denote sets. Random sets are

denoted with bold uppercase letters. Indexed sequences are denoted so that, e.g., Xa:b , {Xj : a ≤ j ≤ b}.
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Figure 1. (a) Figure of a Bayesian network representing the random set tracking model. (b) Details of the measurement
model P (Y k | Xk). (c) Details of the dynamic model P (Xk | Xk−1). The nodes representing the observed variables are
shaded. Rectangular nodes denote discrete random variables.

the measurement model completely. This model is depicted as a Bayesian Network† (BN) in Fig. 1 (a). The
construction of the two conditional distributions, P (Xk | Xk−1) and P (Y k | Xk), is described in Sects. 2.1 and
2.2.

Since the straightforward construction of the conditional probabilities for random sets is complicated, or even
infeasible, some tools have been developed for the purpose. In the case of random vectors, the probabilistic models
are usually constructed using either cumulative distribution functions (CDFs), or probability density functions
(PDFs) of some well-known distributions. In the case of random sets, the belief measure βX , P (X ⊂ C) is a
similar concept to the CDF of random vectors. The belief measure determines uniquely a random set measure.
From the belief measure, one can constructively obtain the random set PDF fX . The belief measure and the
density are related so that

βX(C) =

∫

C

fX(Z)δZ (1)

for any (measurable) set C ⊂ S. The integral in is the Eq. (1) is the set integral. The density function
fX(Z) = δβX/δZ is the set derivative of the belief density. The set integral, the set derivative as well as other
concepts of the finite set statistics are described thoroughly in the book by Goodman et. al.1 For such readers,
who fancy general probability theory, the following references will provide a bit different view of the random set
concepts.6–8

Since the random set approach is a Bayesian formulation, the core of the random set estimation is the Bayes
recursion, which can be written for random set densities as follows,

pk|k−1(Xk) =

∫
fXk|Xk−1

(Xk | Xk−1)pk−1|k−1(Xk−1)δXk−1 (2)

pk|k(Xk) =
fY k|Xk

(Yk | Xk)pk|k−1(Xk)∫
fY k|Xk

(Yk | X ′
k)pk|k−1(X

′
k)δX ′

k

(3)

where the notation pa|b(X) , fXa|Y 1:b
(X | Y1:b) is used. The general Bayes recursion can be computed in closed

form in very rare cases. The multitarget Bayes recursion is inherently intractable. This means, that one needs
to develop a strategy how to approximate Eqs. (2) and (3). In this paper, the selected approach is the particle
filter, i.e. a sequential Monte Carlo approximation of the posterior distribution.9 The particle filter algorithm
is described in Sect. 3.

2.1. The Dynamic Model

The multitarget random set Xk is assumed to be a finite subset of the state space S
‡. The target motions are

assumed independent of each other. In addition, consider that the new target appearance and the old target

†The Bayesian networks are used only in order to illustrate the (in)dependencies in a probabilistic model. For further
information on the Bayesian networks, see, e.g. the PhD thesis of K. Murphy.5

‡In the experiments of this paper, S = R
4, but the space can be virtually anything. The only restriction is that the

space must be locally compact, Hausdorff, and separable.1



disappearance are independent both with respect to each other and with respect to the other targets’ movements.
Then, a multitarget dynamic model shown in Fig. 1 (c) can be constructed in parts,10

Xk = Sk ∪ Bk (4)

where Bk is the set of the appeared new targets, and Sk is the set of the targets survived from the previous
round k − 1.

The dynamic model P (Sk | Xk−1) of the survived is defined by a belief measure βSk
(C | Xk−1) = P (Sk ⊂

C | Xk−1 = Xk−1). Suppose that there are n targets on the set Xk−1 = {x
(1)
k−1, . . . , x

(n)
k−1}, then the set of the

survived targets can be represented as10

Sk =

n⋃

i=1

X
(i)
k where X

(i)
k =

{
{x

(i)
k } with probability ps(x

(i)
k−1)

∅, with probability 1 − ps(x
(i)
k−1)

(5)

where ps : S → [0, 1] characterises the probability of target survival in a given position of the state space.

Since D
(i)
k and {x

(i)
k } were assumed independent, the conditional belief measure of X

(i)
k can be given in the

following form

β
X

(i)
k

(C | Xk−1) = P (X
(i)
k ⊂ C | x

(i)
k−1 = xk−1)

= P (X
(i)
k = ∅ | x

(i)
k−1 = xk−1) + P ({x

(i)
k } ⊂ C | x

(i)
k−1 = xk−1)

= [1 − ps(xk−1)] + ps(xk−1)Pxk|xk−1
(C | xk−1)

where 1 − ps(xk−1) is the probability that a target in position xk−1 will disappear, and Pxk|xk−1
(C | xk−1) =

P (x
(i)
k ∈ C | x

(i)
k−1 = xk−1) is the single-target dynamic model.

Next, one can ask how to obtain the belief measure corresponding βSk
. Since X

(i)
k were assumed independent,

one obtains

βSk
(C | X) = P

(
n⋃

i=1

X
(i)
k ⊂ C

∣∣∣∣∣ Xk−1 = X

)
=

n∏

i=1

P (X
(i)
k ⊂ C | Xk−1 = X)

n∏

i=1

P (X
(i)
k ⊂ C | x

(i)
k−1 = x(i)) =

n∏

i=1

β
X

(i)
k

(C | x(i))

The set of new targets that have appeared Bk can have, in general, any distribution. A rather uninformative
model can be constructed so that one assumes that the targets appear independently in different regions of the

state space. That is, given that k targets are born, the elements b
(i)
k that constitute the set Bk are independent.

This kind of Poisson birth model can be constructed piecewise as follows

βBk
(C | Xk−1) = βBk

(C) =
∞∑

j=0

bjPb(C)j , where bj =
(ητk)j

j!
e−ητk , j ∈ N (6)

where Pb(C) = P (b
(i)
k ∈ C) is a probability measure for the single target appearance and the terms bj =

P (|Bk| = j) denote the probability that exactly j targets are born. This target appearance model is a Poisson
process. The term τk = tk − tk−1 is the time difference between Xk and Xk−1, and η is the birth intensity
parameter, that describes the expected number of born targets per time unit.

Due to the independence of the individual target motions, the disappearance, and the appearance of the new
targets, the conditional belief measure for tthe dynamic model in Fig. 1 (c) can be written as

βXk|Xk−1
(C | Xk−1) , P (Xk ⊂ C | Xk−1 = Xk−1) = P (Sk ∪ Bk ⊂ C | Xk−1 = Xk−1)

= P (Bk ⊂ C) P (Sk ⊂ C | Xk−1 = Xk−1) = βBk
(C)βSk

(C | Xk−1) (7)



2.2. The Measurement Model

Suppose that there is a sensor that includes either one measurement or no measurements in each report. This
section introduces a model for this type of sensor. The sensor model includes independent false alarms, that
occur with probability pf . In addition, the targets are assumed to be measured equiprobably. However, when a
target is attempted to be measured, it may occur that the sensor fails to detect the target, thus there is also a
model for the probability of detection. This measurement model can be factored into a BN shown in Fig. 1 (b).
The binary random variable fk can take the values 1 (a false alarm) and 0 (not a false alarm). The distribution
of fk can be given as follows.

P (fk = f) =

{
1 − pf , f = 0

pf , f = 1
(8)

The association variable ck is integer-valued, and has a distribution that depends only on the current number
of targets, i.e. the cardinality of Xk.

P
(
ck = i

∣∣ |Xk| = n
)

=

{
1/n, 1 ≤ i ≤ n

0, otherwise
(9)

where it is assumed that n ≥ 1. As we shortly see, the distribution of ck is unimportant if n = 0. The
measurement Y k is assumed to depend on Xk, ck, and fk, so that

βY k
(C | Xk, ck = i,fk = 1) = Pf (C)

βY k
(C | Xk = ∅, ck = i,fk = 0) = 1 (10)

βY k
(C | Xk = X, ck = i,fk = 0) = 1 − pd(x

(i)) + pd(x
(i))P (y ∈ C | x(i))

Now, the measurement model P (Y k | Xk) can be derived, since one can write

βY k
(C | X) =

1∑

f=0

∞∑

i=1

P (Y k ⊂ C, ck = i,fk = f | Xk = X)

=
1∑

f=0

∞∑

i=1

[
βY k

(C | Xk = X, ck = i,fk = f)P (ck = i,fk = f | Xk = X)
]

=

1∑

f=0

∞∑

i=1

[
βY k

(C | Xk = X, ck = i,fk = f)P (ck = i | Xk)P (fk = f)
]

(11)

Substituting Eqs. (8)–(10) into Eq. (11), one obtains the following belief measure βY k
(C | X) = P (Y k ⊂ C |

Xk = X).

βY k
(C | ∅) = (1 − pf ) + pfPf (C)

βY k
(C | X) =

1 − pf

|X|

[
∑

x∈X

(
1 − pd(x)

)
+

∑

x∈X

(
pd(x)P (yk ∈ C | x)

)]
+ pfPf (C)

where X 6= ∅. The density corresponding to the belief measure above can be given as follows§

fY k|Xk
(Y | X) =






1 − pf , X = ∅, Y = ∅

pfff (y), X = ∅, Y = {y}

|X|−1
(1 − pf )

∑
x∈X [1 − pd(x)] , X 6= ∅, Y = ∅

|X|−1
(1 − pf )

∑
x∈X

[
pd(x)fy

k
|xk

(y | x)
]
+ pfff (y), X 6= ∅, Y = {y}

(12)

where X denotes a nonempty set.

§For the derivation rules, consult e.g., the monograph by Mahler or the book by Goodman et. al.1, 4
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Figure 2. The data generation procedure for the model of zero or one measurements. The shaded ellipses denote the
“inputs”, while the dotted boxes contain the different possible outputs.

The derived measurement model can be considered intuitively through a procedure that generates a sensor
report, outlined in Fig. 2. The generation of the report starts from the random variable fk determining whether
the current report contains a false alarm. If there is a false alarm, the measurement is distributed according to
the false alarm distribution Pf . If the measurement is not a false alarm, i.e fk = 0, then the procedure continues
with a query of any targets. If there are no targets, the measurement is empty. Otherwise, the i’th target is picked
according to ck = i. The following query determines whether the sensor’s attempt to obtain a measurement of
the i’th target is a success. If the measurement attempt fails, the measurement is again empty. Otherwise, the
measurement is generated according to the single-target measurement model P (yk ∈ C | xk = x(i)).

3. THE PARTICLE FILTER IMPLEMENTATION

This section outlines a particle filter implementation of the random set tracking. The implementation covers
the random set tracking model that was introduced in Sect. 2. The implementation is somewhat different to
what Sidenbladh and Wirkander suggested.3 Due to the different sensor model, the implementation admits a
computational complexity that increases approximately linearly with respect to the expected number of targets.
No prior limit for the number of targets is required, unlike in the algorithm proposed by Sidenbladh and Wirkan-
der.3 Vo et. al proposed this kind of an algorithm for general random set tracking in a conceptual level, but did
not present any tests.2

The implementation that is described in this section is, in fact, exactly the general sampling importance
resampling (SIR) filter¶ with the adaptive resampling.9, 11, 12 The proposed algorithm is outlined in Alg. 1. The
symbols in the algorithm are in accordance with the symbols in Sects. 2.1 and 2.2. The effective sample size is

computed so that12 neff = [
∑n

i=1(w
(i)
k )2]−1, where w

(i)
k are the particle weights. The resampling threshold nth

is an adjustable parameter. The symbol “∼” can be read as “is a random sample distributed according to”.
Notice that the posterior expectation that is estimated has to be real or vector valued, so the function h maps
finite sets to vectors.

The line of Alg. 1 (a) that states “Z
(i)
k is distributed according to βXk|Xk−1

(· | Z
(i)
k−1)” is described in detail

in Alg. 1 (b). The generation of the random samples Z
(i)
k follows directly the presentation in Sect. 2.1. At

first, the number of born targets m is drawn from the discrete Poisson distribution. Then, the state of each of

the born targets is drawn independently according to the birth distribution Pb. For each target in Z
(i)
k−1, it is

determined whether the target will survive. For the surviving targets, samples are drawn from the single-target
motion model Pxk|xk−1

.

4. OUTPUT AND VISUALISATION

Sect. 3 described the SMC random set tracking implementation. An important question is that how one can
extract a reasonable estimate or estimates from the posterior distribution when it is approximated with particles.

¶Also known as the bootstrap filter.



Z
(i)
0 ∼ PX0

w
(i)
0 ← 1/n

for k = 1, 2, . . . do

Z
(i)
k ∼ βXk|Xk−1

(· | Z
(i)
k−1)

ŵ
(i)
k ← fY k|Xk

(Yk | Z
(i)
k )

w
(i)
k ←

ŵ
(i)
k∑n

i=1 ŵ
(i)
k

E [h(X0:k) | Y 1:k = Y1:k] ≈
n∑

i=1

w
(i)
k h(Z

(i)
0:k)

if neff < nth then

(Z
(i)
k ,w

(i)
k )n

i=1 ← resample
[
(Z

(i)
k ,w

(i)
k )n

i=1

]

end if

end for

m ∼ Poisson(ητk)
Bk ← {b1, . . . , bm}, where bi ∼ fb(·)
Sk ← ∅
for all z ∈ Zk−1 do

u ∼ U(0, 1)
if u < ps(z) then

Sk ← Sk ∪ {z′}, where
z′ ∼ Pxk|xk−1

(· | z)
end if

end for

Zk ← Sk ∪ Bk

(a) (b)

Algorithm 1. (a) SIR implementation of the random set estimation framework. (b) Algorithm that draws a sample
Zk from the predictive distribution βXk|Xk−1

(· | Zk−1) given in Eq. (7). The symbol U(0, 1) stands for uniform (0, 1)
distribution.

This means, in practice, that for which functions h in Alg. 1 the posterior expectation should be computed? The
JoME and MaME estimates proposed by Mahler cannot be extracted from this representation straightforwardly,
since both JoME and MaME are “MAP-like” estimates, which require maximisation of the posterior density.4

A reasonable estimator for the whole multitarget state is difficult to construct from the particle representation.
Simple estimators can, however, be obtained for the number of targets. First, consider the functions

hj(X) ,

{
1, if |X| = j

0, otherwise

The cardinality distribution can be estimated using these functions as follows

p̂(j) =

n∑

i=1

w
(i)
k hj(Xk) =

∑

i∈I(j)

w
(i)
k ≈ P (|Xk| = j | Y 1:k = Y1:k)

where I(j) = {i : |Z
(i)
k | = j}. The expected a posteriori (EAP) and the maximum a posteriori (MAP) estimates

for the number of targets can be extracted from this estimated cardinality distribution as follows

n̂EAP
k =

∞∑

j=0

[
jp̂(j)

]
, n̂MAP

k = arg max
j∈N

p̂(j) (13)

The infinite sum in Eq. (13) reduces naturally to a finite sum, since each particle contains a finite number of
elements. Similarly, maximum has to be searched only from a finite set of possibilities. The EAP and MAP
estimators for the number of targets differ also in the sense that n̂MAP

k is integer-valued, but n̂EAP
k is real-valued.

Since the position distribution of the targets is even more important than the cardinality distribution, it is
clear that the position distribution has to be illustrated in some manner—preferably in a manner that is easy to
interpret by a human. In the case of single-target tracking, a rather straightforward and intuitive visualisation
of the single-target position distribution would be to consider a two-dimensional histogram corresponding the
(x, y) coordinates. This type of histogram could be illustrated as an intensity image. In the multiple target case,
similar information can be shown in the form of Probability Hypothesis Density (PHD). The PHD estimator
that is considered in this paper is defined so that the surveillance region S is discretised into finite resolution
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Figure 3. (a) CPU time consumption for one processed measurement with respect to the mean cardinality of the particles.
(b) The sensors (✳) and the tracks (lines) in the scenarios. The tracks start from a square, and end into a cross. The
table gives a summary of the temporal properties of the tracks.

cells. Then, for each finite resolution cell, the expected number of targets in the resolution cell is determined.
This can be achieved as follows. Suppose A ⊂ S is a set corresponding to a resolution cell. Then, one determines
the function hA(X) = |X ∩ A| and obtains

n̂EAP
k (A) ,

N∑

i=1

w
(i)
k |Z

(i)
k ∩ A| ≈ P (|Xk ∩ A| | Y 1:k = Y1:k) (14)

The interpretation of the obtained PHD approximation is quite straightforward: the value n̂EAP
k|k (A) of each

resolution cell A corresponds to the (approximate) expectation of the number of targets within that cell.

5. EXPERIMENTS

The test scenarios consist of a varying number of targets in a surveillance region. There are sensors that measure
the angle from the sensor towards the target based on some signal emitted by the target. This bearings-only

tracking is a rather standard tracking scenario, that has been used in testing of single-target and multitarget
tracking algorithms.11, 13

The experiments in this paper are based on artificial tracks. The measurement reports are generated according
to the ideal measurement model, that is used also by the tracker. Since there are bearings-only measurements,
which are corrupted by false alarms and missed measurements, the scenario can be considered difficult. The
performance of the random set tracking algorithm was not compared with an existing tracking algorithm. This
was due to the fact that no such alternative approaches were found in the literature that could be used in this
kind of scenario.

Sect. 5.1 describes the details of the models that were used in the tests. In addition, the common parameters
of the tracking scenarios are outlined. The specifics of the parameters of each test setup are given in Sect. 5.2,
where the results are also analysed. More tests on this algorithm can be found in.7

5.1. Data and System Parameters

The algorithm was written in Matlab version 6.5. The tests were run on a PC having 2 GHz Intel Pentium 4
CPU and 512 MB of main memory. The number of Monte Carlo (MC) samples (particles) was fixed throughout
the tests to 20000. The resampling threshold nth was set to one fourth of the total number of particles, 5000.
Fig. 3 (a) shows the computational load of the algorithm with respect to the mean cardinality of the particles.
The measure of computational load is the elapsed CPU time (Matlab command cputime). The processing time
is not a direct function of the mean cardinality, but the tendency can be seen: the processing load increases
approximately linearly with respect to the mean cardinality.



The state space S in the test scenarios was four-dimensional consisting of the x and y-coordinates, and
the x and y velocities, denoted as x′ and y′, respectively. The state space was bounded, so that for each
v = [x, y, x′, y′]T ∈ S, the following conditions were satisfied.‖

−50km ≤ x, y ≤ 50km
−1000m/s ≤ x′, y′ ≤ 1000m/s

Fig. 3 (b) shows the positions of the three angular sensors, and the four constant speed tracks involved in the
scenarios. All of the three sensors were used in all the tests, but the number of targets that were selected varied.
The single-target scenario included only the target 1, and the two-target scenario included the targets 1 and 2.

If not otherwise mentioned, the measurement data was generated according to the measurement model
involved in the corresponding test. All the scenarios had a time span from 1 to 300 seconds. The measurements
arrived sequentially at each second. The measurement generation process was such that at each second, the
sensor that produced the measurement was picked randomly. Then, a measurement was generated according
to the sensor model, as illustrated in Fig. 2. Sect. 5.1.2 describes the common parameters of the measurement
model, while the test-specific parameters are given in Sect. 5.2. The parameters of the dynamic model were fixed
throughout the tests to the values described in Sect. 5.1.1.

5.1.1. The dynamic model

The single-target dynamic model was the constant velocity (or the white noice acceleration) model.14 The
process noise standard deviation ρ was fixed to the value 35 m/s3/2. The value was set empirically. The initial
distribution was constrained to be “no targets”, i.e. P (X0 = ∅) = 1. The track birth rate η, i.e. the expected
number of born targets per second, was set to value 0.1. The distribution of the born targets Pb was uniform
over the whole surveillance region. For practical reasons, the Poisson distribution was truncated so that the
maximum number of born targets between two processed sensor reports was one.

The probability of track survival was 0.95 at maximum. To prevent the targets getting out of the surveillance
region, soft boundaries were created so that the probability of survival decreased linearly, if any of x, y is nearer
than 10 km to the surveillance region border, or if any of x′, y′ is nearer than 50 m/s to the allowed velocity
limits. When representing the target state as v = [x, y, x′, y′]T , the probability of survival can be given as follows

ps(v) =





min

i
(0.95,

v(i) + M(i)

b(i)
,
M(i) − v(i)

b(i)
), v ∈ S

0, v /∈ S

M = 103[50, 50, 1, 1]T and b = [104, 104, 50, 50]T . The case v /∈ S, i.e. the vector is out of the surveillance region,
is included due to the fact that the constant velocity single-target dynamic model allows the target to drift
outside the surveillance region∗∗. The probability of survival is exemplified in Fig. 4 (a) as a function of the
(x, y)-position, with zero velocities.

5.1.2. The measurement model

The sensors produced bearings-only measurements. This means, that the sensors returned only the direction of
arrival (DOA) of the signal they measured. In the scenarios, the angular measurement model assumed additive
Gaussian noise. This noisy DOA measurement model can be given as follows.

yk = atan2(ŷ, x̂) + vk mod 2π (15)

where vk is a Gaussian distributed random variable having standard deviation σa, x̂ = x − sx and ŷ = y − sy

are the target x and y coordinates with respect to the sensor position s = [sx, sy]T , and the function atan2 is

‖Since it is convenient, for the sake of intuition, to introduce some units of measurement, we use the standard physical
units of position and time. One should keep in mind, however, that the tests are purely synthetic.

∗∗Strictly speaking, the state space should be considered as S = R
4. It is more convenient, however, to speak of the

effective restriction of R
4 as the state space.
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Figure 4. (a) The probability of survival of a track (b) The single-target measurement likelihood function in the case of
the measurement yk = 7π/6 (c) The probability of detection for the same sensor. All the images illustrate the values of
the functions with respect to the (x, y) position.

the four quadrant inverse tangent. Fig. 4 (b) illustrates the measurement model, showing an intensity image of
the values of the measurement density function fy

k
|xk

(a | [x, y, x′, y′]T ) with respect to x and y, when a = 7π/6.

The measurement model allowed also detections to be missed. For that purpose, the function pd(v) was defined
to determine the probability of detection of a target position v. The model that was used in the experiments
was the following

pd([x, y, x′, y′]T ) = exp

(
−

1

2σ2
r

‖[x̂, ŷ]T ‖2

)

The sensor range parameter σr that was used in the experiments was 80 km. Fig. 4 (c) illustrates the values pd

gets in the different (x, y) positions of the state space. Finally, the sensor was allowed to produce false alarms.
The test cover different false alarm rates (FARs), and the specific values are given below. The false alarm
measurements were assumed to be distributed uniformly in [0, 2π), i.e. ff (a) = (2π)−1 for all 0 ≤ a < 2π.

5.2. Tests

The outputs of the tracking algorithm that were included in the analysis consisted of the two estimates for the
number of targets given in Eq. (13). The PHD visualisation was carried out according to the estimator given in
Eq. (14). The surveillance region was divided into 20 equiwidth intervals with respect to x and y dimensions,
determining 400 equivolume (x, y) resolution cells. The velocity resolution was one, i.e. the velocity components
were not distinguished in any manner.

The actual tests consisted of three setups. The first setup analysed in Sect. 5.2.1 outlines the effect of increased
FARs, while Sect. 5.2.2 contains a test which determines how the algorithm can handle with a mismatch between
the true value of false alarm parameter and the parameter value given to the algorithm.

5.2.1. False alarm rate

The first test setup consisted of test runs with the single-target and the two-target scenario, with three different
increased FARs. The results for the single-target scenario with FARs 30%, 70%, and 80% are shown in Fig. 5.
The top row of Fig. 5 shows the development of the estimators for the number of targets. The uppermost graph
shows the development of the EAP estimator (the dotted line), and the true number of targets (the solid line).
The two graphs below show the development of errors of the EAP and MAP estimators, i.e. the differences
between the values of the estimators and the true target count. The bottom row of Fig. 5 shows a snapshot of
the PHD approximation at one time instant, after processing the 111th measurement. The star (✩) symbol in
the PHD image corresponds to the true position of a target. Notice the logarithmic scale of the intensities in
the PHD image. The absolute value of a particular bin of PHD is generally of no great importance. The general
shape of the PHD image and the current estimated number of targets are more important. The numerical value
of the EAP estimator is shown in the title of the PHD image in addition to the current time instant in seconds.
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Figure 5. Top: Development of the estimates of the number of targets in the single-target scenario, with different
probability of false alarm levels. Bottom: PHD snapshots after processing of the 111th measurement.

The PHD snapshots in Fig. 5 show how the algorithm reacts to the false alarms. There are “ghost” tracks
in addition to the true one. Due to the increased FAR, there are less true target measurement, which delays
the initiation of the track. This can be seen in Fig. 5, where the EAP and MAP estimates rise into unity
approximately after the 15th measurement in the case of 30% FAR, but only after the 50th measurement in the
case of 70% FAR. According to this setup, the algorithm can handle false alarms rather well, providing quite
reliable tracking results with as high FAR as 70% for single target. As FAR is increased to 80%, the algorithm
seems to lose the track temporarily.

The algorithm was tested also in the two-target scenario, with three increased FARs: 10%, 30%, and 50%.
The development of the estimates of the number of targets are shown in Fig. 6. As expected, the performance
of the algorithm decreases more rapidly in the two-target scenario, when the FAR is increased. It must be
mentioned that in this test setup, as FAR is increased the number of the true measurements from each target
decreases.

5.2.2. Parameter mismatch

In real world, the tracking model rarely matches the characteristics of the true tracking environment. Most
importantly, the parameters of the model that are adjusted manually can be expected to be misleading in some
cases. So, a tracking framework should be robust against incorrect parameter values, at least in some extent††.
Therefore, a test of robustness against a parameter mismatch was included. The target parameter was the false
alarm rate.

The test was carried out using the single-target scenario. The only parameter value that was altered was the
probability of false alarm, pf . The FARs that were used in the experiment were 5%, 30% and 70%. The input
data, i.e. the measurements, were generated separately according to each FAR. After that, for each input data,
the algorithm was run with each of the three values of the probability of false alarm parameter pf .

††Of course, if an algorithm is made extremely robust against incorrect parameter values, then the parameters do not
affect in any way.
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Figure 6. Top: the development of the estimates of target count in the two-target scenario with different FARs. Bottom:
the corresponding PHD snapshots after processing of the 111th measurement.

Table 1. Mean absolute error of the estimates of the number of targets, when the parameter value was altered from the
true ones. The errors of the EAP estimate are shown in (a), and the errors of the MAP estimate in (b). The smallest
error value in each row is shown in boldface.

(a) (b)

True Parameter value

value 5% 30% 70%

5% 0.077 0.075 0.106
30% 0.104 0.086 0.107
70% 0.581 0.244 0.214

True Parameter value

value 5% 30% 70%

5% 0.047 0.050 0.087
30% 0.040 0.053 0.073
70% 0.480 0.180 0.153

The mean absolute errors of the EAP and MAP estimates in the case of all the combinations of the parameter
values and the true (simulated) values are shown in Table 1. The trend seems to be that the true parameter
values produced the best results. However, for 5% FAR input data, the mean absolute error of the EAP for
algorithm running on 30% setting was the smallest. Similarly, for 30% FAR input data, the algorithm running
on pf setting 5% had a smaller mean MAP error than the true setting. These “anomalies” may be explained
by the Monte Carlo variation in the output of the algorithm, and the particular input data. Most importantly,
though, the performance of the algorithm decreased gradually with respect to the mismatch in the parameter
value. The worst result was obtained with input data having 70% false alarms, and the parameter value set to
5%.

6. CONCLUSIONS AND FUTURE WORK

This paper described a SMC random set tracking implementation in the case of independently operating sensors
producing at most one target measurement in each report. The SMC implementation was tested in simple but
challenging bearings-only tracking scenarios. The experimental results show that the random set framework has
potential in such a challenging tracking task. The algorithm showed robustness against relatively high false alarm



rates (FARs). The degradation of the performance of the algorithm was gradual with respect to the increasing
FAR. This property is promising in view of low-fidelity sensors that are prone to produce many false alarms.
The algorithm was tested also with incorrectly set FAR parameter values. The performance of the algorithm
degraded gradually as the mismatch increased.

It seems that, without substantial reduction of the computational complexity, the SMC implementation of
the random set Bayes recursion cannot be applied to tracking of a large number (tens or more) of targets.
The computational complexity of the algorithm increases approximately linearly with respect to the number of
targets, when the number of Monte Carlo (MC) samples is kept fixed. In practice, however, the number of MC
samples needs to be increased as the number of targets increases in order to achieve a given accuracy. Hence, the
computational complexity of the algorithm increases more rapidly in practice. For such purposes, when there
are a lot of targets, the PHD approximation of the random set tracking framework may be considered a better
alternative.

In future, the algorithm could be made more effective by selecting a different importance distribution. The
predictive importance distribution used by the described SIR filter is quite ineffective. Especially such a choice
of an importance distribution that takes the measurements into account in drawing the states of the born targets
could be considered. The Rao-Blackwellised SMC has been proposed to tracking multiple targets with bearings-
only measurements.13 It is possible to derive a similar approach in the random set framework. The PHD
approximation10 could be researched also in the case of the proposed measurement model.
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