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This thesis is a background study of the theory of finite random sets, and their
application to target tracking. The main purpose is to provide a solid theoretical
basis for further research and development of random set tracking methods. The
random set approach to multitarget tracking is a theoretically sound framework,
that covers the joint estimation of the number of targets, and the state of the
targets. In addition to the theory of random sets, the thesis provides a review
of related subjects, such as general probability theory and recursive Bayesian
estimation. Sequential Monte Carlo (SMC) is selected as an approximative com-
putational strategy, so a summary of SMC methods is included. In addition, a
literature review on Bayesian target tracking methods is given.

The random set tracking model that is considered in this thesis includes a
model for such sensors that produce at most one measurement per report. A SMC
implementation for the random set tracking model is derived. The results that
were obtained during the limited tests of the SMC algorithm serve as a “proof-of-
concept”. Based on the results, the practical usability of the algorithm cannot be
assessed. Merely, the results in this thesis show that the random set framework
has potential for challenging tracking situations. The tests consisted of synthetic
bearings-only tracking scenarios with up to four targets, in the presence of false
alarms, and missed measurements. The algorithm was capable to track up to
two targets quite reliably. In addition, the algorithm showed robustness against
relatively high false alarm rates. Moreover, the performance of the algorithm
degraded gradually with respect to an increasing mismatch in the false alarm
rate parameter value and the parameter value in the tracking environment.
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Chapter 1

Introduction

Mathematical modelling is always a compromise. Naylor and Sell [1982] suggests
that when a model includes many aspects of a real system, the model becomes
complex, and mathematically intractable. On the other hand, when a model is
made simple enough to be mathematically tractable, the modelling accuracy of
the model may become poor. One philosophy for constructing a model is to use all
available information, and create as accurate model as possible, but then seek for a
tractable computational strategy [Stone et al. 1999]. Modern computer resources
provide means to approximately handle complex models. There is a whole variety
of simulation based algorithms available, which have gained attention in the last
decades [Doucet et al. 2001; Liu 2003; Robert and Casella 1999].

This thesis addresses the problem of tracking an unknown number of tar-
gets. Such a problem arises naturally in a surveillance application, where a sensor,
or a suite of sensors produce noisy measurements [Goodman et al. 1997]. In such
an application, the targets can be, for example, aircrafts whose geokinematic state
is tracked [Bergman 1999]. Similar problem can be considered to arise also in such
different application areas as robotics, or automatic transcription of polyphonic
music. In robotics, the problem can arise in determining the positions of humans
surrounding the robot [Schulz et al. 2001]. In the latter problem, “targets” are,
e.g., instruments, and their state is the note or chord that is played at current
time [Klapuri 2004].

1.1 Goal

The traditional approach for building tracking systems separates the following
subproblems to be solved [Blackman and Popoli 1999; Goodman et al. 1997].

1. Kinematic filtering of single targets, i.e. estimation of the geokinematic
position of a target given noisy or indirect measurements.

2. Attribute fusion of single targets, i.e. estimation of some other charac-
teristics, e.g. identification and type information, given noisy or indirect
measurements.

3. Data-association, i.e. estimation of the measurement-target correspon-
dence.

1



2 CHAPTER 1. INTRODUCTION

4. Initiation and track maintenance, i.e. estimation of the number of targets
currently in the surveillance region.

This decomposition has been more or less the de facto standard for solving track-
ing problems. The popularity of the separation is probably based on the existing
algorithms for “solving” the subproblems1. However, the combination of the algo-
rithms “solving” the subproblems has been rather difficult.

The separation of the problem into the above mentioned subproblems
has been found to work rather well in practice in several situations. However,
the implementation of such functionalities need to be specifically tailored for the
purpose of each particular tracking situation. In addition, since the subproblems
are considered as separate, one needs to make hard decisions on intermediate
estimation problems. The author’s opinion is that making such hard decisions
can be considered justified, if the uncertainty of the decisions is rather low. That
is, the data that is used in estimation is rather accurate. If the estimation problem
is very challenging, i.e. the data rate or accuracy is poor, making such decisions is
hard, and wrong decisions are easily made. And what follows is that the tracking
result is unreliable.

Goodman et al. [1997] refer such an estimation framework as “indirect”,
in which an intermediate estimation problem is solved before the final objective.
This thesis aims to providing a “direct” estimation framework, in which all the
above estimation problems are considered as one. The main purpose of the thesis
is to bind together the recent development in Bayesian target tracking, that con-
cerns the joint estimation of target count, and their state, which may consist of
geokinematic and attribute parts. This thesis is primarily based on the random
set formalism presented for the purposes of data fusion in [Goodman et al. 1997].
The random set framework is the only rigorously formulated approach, that has
been proposed for general multitarget tracking in the literature2. The application
of the random set approach requires an approximative computational strategy. In
this thesis, the selected strategy is the sequential Monte Carlo simulation.

In addition to reviewing the random set approach to tracking, this thesis
contains basics of general probability theory as well as estimation theory, to be
as self-contained as possible. The sequential Monte Carlo techniques are reviewed
as well, in the depth required by the application. Few proofs are presented—
the results are merely listed. As a theoretical perspective, the purpose of this
thesis is to uncover the random set approach, providing a solid basis for further
development of the algorithms presented in the literature, and means for bringing
the algorithms into practical applications.

1. For example, the (extended) Kalman filter solves the kinematic filtering, the hidden Markov
model filter solves the attribute fusion (if attributes are assumed discrete-valued), the joint
probabilistic data-association solves the data-association, and the track maintenance is solved
by expert systems. [Blackman and Popoli 1999; Korpisaari 2001]
2. There are approaches presented in the literature, that have been formulated differently.
Most of them can essentially be considered as special cases of the random set approach. For
more discussion, see, e.g., [Mahler 2003a].
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1.2 Structure

Unfortunately, this thesis contains some mathematics, that may be rather labo-
rious to follow by an engineering oriented person. For example, the probability
theory is kept quite abstract, and cannot be considered a good tutorial to the sub-
ject. The references that are given in the text lead into better tutorial sources.
The abstract probability theory is considered necessary, since the main goal of the
thesis is to study random sets, which cannot be considered as any kind of random
variables or vectors, which are covered in elementary probability theory. Most of
the contents of the thesis, however, can be read by anyone with elementary math-
ematical background—most importantly by any engineering oriented person. One
should keep in mind when reading, that the author is not a mathematician, but
merely an engineer.

The thesis starts with a review of probability theory in Chapter 2. Recur-
sive Bayesian estimation is discussed in brief in Chapter 3. The sequential Monte
Carlo approach as a computational strategy for recursive Bayesian estimation
is covered in Chapter 4. The theory related to random sets is summarised in
Chapter 5. Chapter 6 provides a literature review of target tracking, and contains
some of the basic models that are commonly used in tracking. The random set
approach to target tracking is discussed in Chapter 7. The limited experiments
are described in Chapter 8, and conclusions are drawn finally in Chapter 9. The
Appendices are included for the thesis to be self-contained. Appendix A contains
some results of analysis, measure theory, and integration. Appendix B contains a
brief description of the notion of Bayesian network graphs of probabilistic models.
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Chapter 2

Probability Theory

This chapter covers some probability theory that is needed for the applications
presented in the following chapters. The reader is referred to Appendix A for
definitions and results of analysis. Readers without elementary probability theory
background are advised to look through first an introductory book, e.g. [Shiryaev
1996, Chapter I], or selected parts of [Feller 1971].

Section 2.1 starts the chapter with the definition of a probability space.
Section 2.2 covers the definition of a random element, and some special cases,
such as random variables, vectors, and processes. The density function of a ran-
dom element is defined in Section 2.3, and independence of random elements in
Section 2.4. The expectation of a random variable and some related concepts are
given in Section 2.5, while Section 2.6 continues with the definitions of conditional
expectations, and conditional probability. Convergence of random sequences of
random variables is reviewed in Section 2.7. The definitions of some common
random distributions and processes are given in Section 2.8. Finally, Section 2.9
summarises some concepts of estimation theory in terms of general probability
theory.

2.1 Probability Space

In this thesis, a probability space is defined directly as a measure space, with the
property that the measure of the whole space is one. No explicit “(Kolmogorov)
axioms of probability” are given, since they are included in the definition of a
general measure1. In many books of probability, the definition is given without
reference to measure spaces. However, since measure spaces are needed in this
thesis anyway, it is convenient to give the definition in this form.

Definition 2.1 The measure space (Ω,M, P ) is a probability space, if P (Ω) =
1. The set Ω is called the sample space, the σ-algebraM on Ω constitutes of the
possible events, and P is the probability measure. The probability measure P
defines probability P (E) for all events E ∈M.

1. For a historical review of the development of probability theory, see e.g. [Doob 1996].
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An example of a probability space is given next. The example can be considered,
indeed, a useful one for the purposes of intuition.

Example 2.2 Consider the case where the sample space is the real hypercube
Ω = [0, 1]d, L is the collection of all Lebesgue-measurable subsets in Ω, and
λd : L → [0, 1] is the Lebesgue measure in Rd. Then, the measure space (Ω,L, λd)
is a probability space. ♦

2.2 Random Elements

The probability space introduced in Section 2.1 is an abstraction that is hidden in
many applications. The problems are often convenient to formulate using random
elements2 and their distributions.

Definition 2.3 A random element x : Ω→ X is a measurable mapping from
the probability space (Ω,M, P ) to some measurable space (X,N ). That is, for all
B ∈ N , ←−x (B) = {ω ∈ Ω : x(ω) ∈ B} ∈ M
where the notation ←−x (B) denotes the preimage of the set B.

Definition 2.3 above ensures that the probability measure P defines a probability
measure Px for all measurable B ∈ N as follows

Px(B) , P (←−x (B)) (2.1)

It is obvious that (X,N , Px) is a probability space.
Quite often, the sample space X of the random element is a topological

space, and the selected σ-algebra is the Borel sets, N = B(X). In particular,
when X = R and N = B(R), the random element is referred to as a random
variable. If X = R (the extended real numbers) and N = B(R), the random
element is referred to as an extended random variable. In applications, the
most common random element is a random vector, which is introduced next.

Definition 2.4 A random element x(ω) = [x1(ω), . . . ,xd(ω)]T is a random
vector in Rd, if x1, . . . ,xd are random variables.

One could ask, whether the direct definition of a random vector as a random
element x : Ω → Rd would be more general than the definition given above.
It turns out, that every random element in (Rd,B(Rd)) is a random vector in
the sense of Definition 2.4, and every d-dimensional random vector is a random
element in (Rd,B(Rd)) [Shiryaev 1996, p. 177].

Definition 2.5 We call the random element x = (xt)t∈T a stochastic process,
where T is an arbitrary index set, and each xt : Ω→ X is a random element.

2. Sometimes referred to as random variable, or random object.
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Figure 2.1: (a) Example of a discrete random variable, when S = {a, b, c, d}. (b)
Example of continuous random variable, when S = [a, b] ⊂ R.

In this thesis, the index set T is some subset of [0,∞), or N, and stands for time,
or time index. Generally, if T is countable, the stochastic process is referred to
as a random sequence, or a discrete-time process. If T is uncountable, then the
process is sometimes referred to as a continuous-time process.

Using the probability space defined in Example 2.2, in the case Ω = [0, 1],
two simple examples of random elements are given.

Example 2.6 A discrete random variable is a random element with a count-
able range. For example, in the case of a finite range, one can characterise the ran-
dom variable as a map to a set S with finite number of elements, S = {s1, . . . , sn}.
The space S is endowed with discrete topology, and the random variable x : Ω→
S is a measurable simple function. The mapping x can be defined indirectly, by
assigning a probability 0 ≤ P ∗(s) ≤ 1 for each individual realisation s ∈ S, so
that

∑
s∈S P

∗(s) = 1. Then, one can define

x(ω) =

{
s1, ω ≤ P ∗(s1)

si,
∑i−1

j=1 P
∗(sj) < ω ≤∑i

j=1 P
∗(sj) for i = 2, . . . , n

(2.2)

The probability measure Px can be given as follows.

Px(B) =
∑
s∈B

P ∗(s)

where B ⊂ S. This construction is straightforward to extend to cover random
variables with a countable range, in an obvious manner. ♦

Figure 2.1 (a) shows an example of a discrete random variable when S has four
elements, and x : Ω → R is constructed as given in Equation (2.2). Another
example of a random variable can be constructed so that one defines any other
measurable mapping, e.g. continuous one, from the interval [0, 1] to some subset
of R. The mapping of such a random variable is exemplified in Figure 2.1 (b).

Remark 2.7 The concept of a random element can be illustrated also through
actual generation of pseudo-random numbers with a computer. Consider the ex-
amples given above. Many random number generation schemes are based on a
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uniform [0, 1] random number generator (giving ω), followed by transformation
methods (the random element x(ω)) [Robert and Casella 1999, p. 35].

2.3 Probability Density Function

We begin with a general definition of the probability density function, or density
of a measure [Shiryaev 1996, p. 196].

Definition 2.8 Suppose that a random element x : Ω → X has a probability
measure Px that is absolutely continuous with respect to a σ-finite measure µ
on (X,N ). The probability density function (PDF) of x is such function
fx : X → [0,∞), that for all E ∈M,

Px(E) =

∫

E

fx(x)dµ(x)

That is, fx = dPx/dµ is the Radon-Nikodym derivative (RND) of Px with respect
to µ.

The Radon-Nikodym Theorem (A.42) ensures that fx exists, and is unique µ-a.s.
Notice, however, that the existence of fx requires Px to be absolutely continuous
with respect to µ.

Many times, probability measures are constructed directly using prob-
ability density functions. Consider a situation where (X,N ) is a measurable
space, and µ a σ-finite measure. Then, suppose f : X → [0,∞) is a nonnega-
tive measurable function with the property that

∫
fdµ = 1. Then, a set function

P : N → [0, 1] can be constructed as follows.

P (E) =

∫

E

f(x)dµ(x) (2.3)

Clearly, P defined above is a probability measure on (X,N ), and P is absolutely
continuous with respect to µ. So, f = dP/dµ, and (X,N , P ) is a probability
space.

2.4 Independence

The notion of independence of events, σ-algebras and random elements is often
encountered. The definitions in this section are given according to [Shiryaev 1996,
pp. 28–29; 179].

Definition 2.9 Let A ⊂M be a finite collection of events. The events in A are
independent, if the following condition is satisfied.

P (
⋂
M∈A

M) =
∏
M∈A

P (M)

The σ-algebras M1, . . . ,Mn are independent, if the events M1, . . . ,Mn are inde-
pendent, for each selection Mi ∈Mi.
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Definition 2.10 Let {xi : i ∈ I} be a collection of random elements xi :
(Ω,M) → (Xi,Ni). The random elements are (collectively) independent, if
for every finite collection {ik}nk=1 ⊂ I the following condition is satisfied

P (xi1 ∈ Bi1 , . . . ,xin ∈ Bin) =
n∏

k=1

P (xik ∈ Bik)

for each selection of Bik ∈ Nik .

Since it often occurs, that one manipulates functions of independent ran-
dom variables, the following proposition is worth stating.

Proposition 2.11 Let {xi : i ∈ I} be a collection of independent random el-
ements, xi : (Ω,M) → (X,N ), and let h : (X,N ) → (Y,Q) be a measurable
function. Then the random elements h(xi) are independent.

Proof. Let {ik}nk=1 ⊂ I be an arbitrary finite subcollection of indices. Suppose
Ci1 , . . . , Cin ∈ Q are arbitrary measurable sets.

P (h(xi1) ∈ Ci1 , . . . , h(xin) ∈ Cin) = P (xi1 ∈ Ai1 , . . . ,xin ∈ Ain)

(∗)
=

n∏

k=1

P (xik ∈ Aik) =
n∏

k=1

P (h(xik) ∈ Cik)

where the equality (∗) is due to independence of xi, since the sets Ai =
←−
h (Ci) ∈

N , by assumption of measurability of h. �

2.5 Expectation

This section introduces the expectation of a random variable, and some related
concepts. We begin with the definition [Shiryaev 1996, p. 182].

Definition 2.12 The expectation of a (possibly extended) random variable x :
Ω→ R, denoted by E [x], is defined as

E [x] ,
∫
xdP

if the integral exists.

Notice, that E [x] may be finite, or equal to ∞ or −∞, or be undefined. Taking
expectation of a random variable is integration, so the properties of general in-
tegrals, some of which are listed in Section A.5.2, apply also to the expectation
operator.

The expectation is a basis for some other concepts. The following definition
lists perhaps the most popular ones. Notice, that some of the expectations may
be infinite, or undefined in the definitions [Shiryaev 1996, pp. 182; 234].
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Definition 2.13 Let x and y be two random variables, with finite expectations
E [x] = mx and E [y] = my. Their covariance is defined as follows.

cov(x,y) , E [(x−mx)(y −my)]

If cov(x,y) = 0, the random variables x and y are said to be uncorrelated. The
expectation E [xr], where r > 0, is called the r’th moment of x. The variance
of x, denoted by V [x] is defined as follows.

V [x] , E
[
(x−mx)2

]
= cov(x,x) = E

[
x2
]−m2

x

If 0 < V [x] ,V [y] <∞, the correlation coefficient for x and y is

corr(x,y) , cov(x,y)√
V [x] V [y]

The next theorem gives a general method for assessing an upper bound for abso-
lute variation of a random variable in terms of variance [Shiryaev 1996, p. 192].

Theorem 2.14 (Chebyshev) Let x be a random variable with a finite expecta-
tion and variance. Then, the following inequality is satisfied.

P (|x− E [x]| ≥ ε) ≤ V [x2]

ε2

Since the tracking application discussed in Chapter 6 requires random vec-
tors, the concepts of a covariance matrix and a mean vector are required [Shiryaev
1996, p. 235].

Definition 2.15 Let x = [x1, . . . ,xd]
T be a random vector in Rd. The covari-

ance matrix of x is a d× d-matrix Rx defined elementwise as follows.

[Rx]ij , cov(xi,xj)

The covariance matrix can also be given in a matrix algebra form

Rx = E
[
(x− E [x])(x− E [x])T

]

where the expectations are taken elementwise, e.g. E [x] = [E [x1] , . . . ,E [xd]]
T =

mx. The vector mx is called the mean vector of x.

The covariance matrix Rx is always symmetric and positive semi-definite.

2.6 Conditional Expectation and Conditional Probability

The definition of the conditional expectation given in this section follows the
presentation in [Shiryaev 1996, p. 213]. We first define the conditional expectation
of a nonnegative random variable, and then give the general definition for the
conditional expectation.
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Definition 2.16 Let G ⊂ M be a sub-σ-algebra of M. The conditional expec-
tation of a nonnegative random variable x+ given a σ-algebra G, denoted by
E [x+ | G], is a G-measurable random variable that satisfies

∫

A

x+dP =

∫

A

E
[
x+ | G] dP

for all A ∈ G.

The conditional expectation E [x+ | G] exists and is almost surely unique by the
Radon-Nikodym theorem, for let Q(B) =

∫
B
x+dP , which is absolutely contin-

uous with respect to P . Then, by the Radon-Nikodym theorem, Q has a RND
with respect to P , which is G-measurable. That is, E [x+ | G] = dQ/dP .

Definition 2.17 The conditional expectation of an extended random variable
x given a σ-algebra G is considered to be defined, if at least one of E [x+ | G]
and E [x− | G] is finite P -a.s. Then, it is given by

E [x | G] , E
[
x+ | G]− E

[
x− | G]

The conditional probability of an event A ∈ M can be defined in terms
of the conditional expectation, if one takes the characteristic function of A,

χA(ω) =

{
1, ω ∈ A
0, ω /∈ A

as a random variable.

Definition 2.18 The conditional probability of an event A ∈M with respect
to a σ-algebra G is defined as follows.

P (A | G) , E [χA | G]

where χA : Ω→ R is the characteristic function of the set A.

More often, in applications, one encounters conditional expectations or
probabilities with respect to a random element [Shiryaev 1996, p. 214].

Definition 2.19 Let x : Ω→ R be an extended random variable and y : Ω→ Y
be a random element. Denote the σ-algebra generated by y as Gy = σ(y). Then,
the conditional expectation of x with respect to y is defined as follows.

E [x | y] , E [x | Gy]

if the conditional expectation of x with respect to Gy is defined.

Next definition gives a more intuitively appealing characterisation of the condi-
tional expectation of a random variable given a random element [Shiryaev 1996,
p. 220].
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Definition 2.20 Let x : Ω → R be a random variable with E [x] defined, and
let y : (Ω,M) → (Y,N ) be a random element. The conditional expectation of x
with respect to the condition y = y is a measurable function m(y), for which the
following is satisfied ∫

←−y (B)

xdP =

∫

B

m(y)dPy(y)

for all measurable B ∈ N .

The function m always exists, since if one defines Q(B) =
∫
←−y (B)

xdP , then clearly
Q is a signed measure that is absolutely continuous with respect to Py, so the
Radon-Nikodym theorem ensures that m exists. In addition, m(y) is Gy measur-
able. Hence, Definitions 2.19 and 2.20 are dual, since one can reconstruct E [x | y]
from m(y) = E [x | y = y] and vice versa.

The following theorem lists some basic properties of the conditional ex-
pectation [Shiryaev 1996, pp. 216–221].

Theorem 2.21 Suppose x and y are independent random variables, {zi}ni=1 are
nonnegative random variables, f is a measurable function, and H ⊂ G are σ-
algebras. Then,

1. E [E [x | G] | H] = E [x | H] (P -a.s.)
2. E [f(x,y) | y = y] = E [f(x, y)] (Py-a.s.)
3. E [

∑n
i=1 zn | G] =

∑n
i=1 E [zi | G] (P -a.s.)

The conditional probability with respect to a random element can be given in an
obvious manner, using Definitions 2.19 and 2.20.

Definition 2.22 Let y : Ω→ Y be a random element. The conditional probabil-
ity of event A given the condition y = y is defined as follows.

P (A | y = y) , E [χA | y = y]

Equivalently, P (A | y = y) can be defined as a measurable function Y → R, such
that

P (A ∩←−y (B)) =

∫

B

P (A | y = y)dPy(y) (2.4)

for every measurable B ⊂ Y .

The next example is from [Shiryaev 1996, p. 222], but it is modified to
cover general product spaces instead of R× R.

Example 2.23 Consider two random elements x and y with images on measure
spaces (X,NX , µ) and (Y,NY , ν), respectively. Suppose, that fx,y(x, y) is a prob-
ability density function of x and y with respect to the σ-finite product measure
(µ× ν),

P ((x,y) ∈ B) =

∫

B

fx,y(x, y)d(µ× ν)(x, y), for all B ∈ NX×Y (2.5)
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Then, fx =
∫
fx,y(x, y)dν(y) is the RND dPx/dµ, and similarly fy = dPy/dν

according to Fubini’s theorem. Define the function fx|y as follows.

fx|y(x | y) =




fx,y(x, y)

fy(y)
, fy(y) > 0

0, fy(y) = 0
(2.6)

Then, it follows that fx|y = dP (x | y)/dµ is the density of the conditional
probability distribution. That is,

P (x ∈ C | y = y) =

∫

C

fx|y(x | y)dµ(x) (2.7)

Clearly fx|y as defined in Equation (2.6) is µ-measurable for all y. To verify
Equation (2.7), it is sufficient to verify Equation (2.4) in the case A =←−x (C).

∫

B

[∫

C

fx|y(x | y)dµ(x)

]
dPy(y) =

∫

B

[∫

C

fx|y(x | y)dµ(x)

]
fy(y)dν(y)

=

∫

C×B
fx|y(x | y)fy(y)d(µ× ν)(x, y) =

∫

C×B
fx,y(x, y)d(µ× ν)(x, y)

= P (←−x (C) ∩←−y (B))

according to Fubini’s theorem. ♦

The conditional probability P (A | G)(ω) satisfies the following properties
for a.e. ω ∈ Ω.3

1. P (Ω | G)(ω) = 1
2. P (∅ | G)(ω) = 0
3. P (

⋃∞
k=1Ak | G) =

∑∞
k=1 P (Ak | G), for disjoint Ak ∈M.

That is, the conditional probability P (· | G) determines a probability measure for
a.e. ω ∈ Ω. It is desired, that the conditional probability satisfies the conditions
1–3 for every ω ∈ Ω. The following definition gives a characterisation of such
conditional probabilities [Shiryaev 1996, p. 226–227].

Definition 2.24 Let G ⊂ M be a sub-σ-algebra of M. A function P (ω,B) de-
fined for all ω ∈ Ω and B ∈ M is a regular conditional probability with
respect to G, if

1. For each ω ∈ Ω, the function P (ω, ·) is a probability measure on M.
2. For each B ∈ M, the function P (·, B) is a variant of the conditional

probability, i.e. P (ω,B)
a.s.
= P (B | G)(ω).

Let x : Ω → X be a random element with values in a measurable space (X,N ).
A function Q(ω,B) defined for ω ∈ Ω and B ∈ N is a regular conditional
distribution of x with respect to G if the following conditions are satisfied.

1. For each ω ∈ Ω, the function Q(ω, ·) is a probability measure on N .

3. The two first are obvious, while the third follows from property 3 in Theorem 2.21.
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2. For each B ∈ N , the function Q(·, B) is a variant of the conditional
probability with respect to G, i.e. Q(ω,B)

a.s.
= P (x ∈ B | G)(ω).

Regular conditional probabilities are convenient in practice, since for example the
conditional expectations can be given in terms of the conditional probability, as
stated in the following theorem [Shiryaev 1996, p. 227].

Theorem 2.25 If P (A | G) is a regular conditional probability, then

E [x | G] (ω)
a.s.
=

∫
x(ω′)dP (ω′ | G)(ω)

The following theorem ensures, that conditional probability distributions exist for
quite broad class of random elements [Shiryaev 1996, p. 229].

Theorem 2.26 Let x : Ω → X be a random element with values in a Borel
space (X,N ). Then there is a regular conditional distribution of x with respect
to a σ-algebra G.

Especially, Rd is a Borel space, as well as any complete, separable metric space.
See Definition A.35 for the exact definition of a Borel space.

Remark 2.27 The conditional expectation with respect to several random ele-
ments x1, . . . ,xk, where xi : (Ω,M)→ (Xi,Ni), is defined as follows.

E [A | x, . . . ,xk] , E [A | σ(Gx1 , . . . ,Gxk)]

where Gxi = σ(xi) is the σ-algebra generated by the random variable xi. The
conditional probability is denoted similarly.

2.7 Convergence of Sequences of Random Elements

Consider a sequence of real-valued outcomes of an random experiment. When the
average of increasing number of such outcomes is computed, it tends to converge
to a certain value, namely the expectation. So, suppose in general a sequence
{xk}∞k=1 of random elements. The sequence can converge to a random element x
in many different ways. This section outlines the basic types of convergence of
random elements [Shiryaev 1996, pp. 252–261].

Definition 2.28 Let x be a random variable, and {xk}∞k=1 a sequence of random
variables. The sequence {xk}∞k=1 is said to converge to the random variable x

1. with probability one, or a.s., denoted by xk
a.s.−−→ x, if

P ({ω : lim
k→∞

xk(ω) 6= x(ω)}) = 0
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2. in mean of order p, denoted by xk
Lp−→ x, if

lim
k→∞

E [|xk − x|p] = 0

where p > 0. In the special case when p = 2, the convergence is referred
to as mean square convergence, and denoted4 by l.i.m.xk = x.

3. in probability, denoted by xk
P−→ x, if for all ε > 0,

lim
k→∞

P (|xk − x| > ε) = 0

4. in distribution, denoted by xk
d−→ x, if

lim
k→∞

E [f(xk)] = E [f(x)]

for each bounded and continuous function f .

The almost sure convergence (1.) is meaningful to consider for random elements
in any topological space. The convergence modes in mean of order p and in prob-
ability (2. and 3.) can be generalised into random elements x, xk in a metric
space (X, d), by replacing |xk−x| with d(xk,x). The convergence in distribution
(4.) can be considered even for random elements defined in different probability
spaces.

The convergence modes in Definition 2.28 are ordered according to their
“strength”, since the following implications can be shown valid [Shiryaev 1996,
p. 256].

Theorem 2.29

xk
a.s.−−→ x =⇒ xk

P−→ x

xk
Lp−→ x =⇒ xk

P−→ x

xk
P−→ x =⇒ xk

d−→ x

Finally, the two most popular limit theorems for independent and iden-
tically distributed (IID) random variables are stated [Shiryaev 1996, pp. 326;
389–391].

Theorem 2.30 (Central Limit Theorem) Let {xk}∞k=1 be a sequence of IID
nondegenerate, i.e. V [x1] > 0, random variables with finite second moments. Let
sn =

∑n
k=1 xk. Then,

sn − E [sn]√
V [sn]

=

√
n

V [x1]

(
sn
n
− E [sn]

n

)
d−→ N(0, 1)

4. “l.i.m.” stands for “limit in the mean”.
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Theorem 2.31 (Strong Law of Large Numbers) Suppose that {xk}∞k=1 is a
sequence of IID random variables with E [|x1|] <∞. Denote sn =

∑n
k=1 xk. Then,

sn
n

a.s.−−→ m

where m = E [x1].

These results, while being merely theoretical, are often referred to as, when the
Monte Carlo methods are considered. The Monte Carlo methods are discussed in
Chapter 4.

2.8 Common Distributions and Processes

This section covers the definitions of some common random distributions and
stochastic processes. The emphasis is on presenting the distributions that are
needed in Chapters 6 and 7.

2.8.1 Gaussian Distribution

The Gaussian distribution is by far the most frequently used random distribution
in applications. The Gaussian distribution is most often used for practical rea-
sons, since it has many “user-friendly” properties5. Most commonly, the Gaussian
distribution is defined directly through a probability density function. We intro-
duce the Gaussian distribution via the characteristic function, to include also the
degenerate case [Shiryaev 1996, p. 275].

Definition 2.32 The characteristic function φx : Rd → C of a random
vector x is defined as follows.

φx(t) = E
[
exp(itTx)

]
=

∫

Rd
exp(itTx)dPx(x)

where i is the imaginary unit, and the expectation (integral) of the complex-valued
random variable is taken separately for the real and the imaginary parts.

The characteristic function defines uniquely a random distribution. That is, if x
and y have the same characteristic function, their probability measures are also
the same, Px ≡ Py.

The multivariate Gaussian distribution on Rd is completely defined by the
mean vector and the covariance matrix [Shiryaev 1996, p. 299].

Definition 2.33 A random vector x is Gaussian, or normally distributed,
if the characteristic function of x has the form

φx(t) = exp
[
itTm− (1/2)tT (Rt)

]

5. For example, sum of two independent Gaussian random variables is Gaussian. In recursive
Bayesian estimation (Chapter 3), the linear-Gaussian case is one of the few special cases, that
admit closed form solution.
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Figure 2.2: Generated random samples from a Gaussian distribution in R2 with
a non-invertible covariance matrix.

where m ∈ Rd is the mean vector and R ∈ Rd × Rd is a symmetric and positive
semi-definite matrix. The probability measure of a Gaussian random vector with
parameters m and R is denoted as N(B;m,R) , Px(B).

If R is positive definite, hence invertible, the random measure N(·;m,R)
is absolutely continuous with respect to the Lebesgue measure λd in Rd, and can
be given as follows.

N(B;m,R) =

∫

B

fx(x;m,R)dλd(x) (2.8)

with the probability density function given as

fx(x;m,R) =
1√

(2π)d det(R)
exp

[
−1

2
(x−m)TR−1(x−m)

]
(2.9)

where det(R) denotes the determinant of the covariance matrix, and R−1 is the
inverse matrix.

In one-dimensional case, the Gaussian distribution with parametersm ∈ R
and r = V [x] = 0 is a degenerate random variable, i.e. P (x = m) = 1. In R2,
an example of a Gaussian distribution with a non-invertible covariance matrix
[R]ij = 1 is depicted in Figure 2.2.

2.8.2 Markov Chain

Markov chains are quite simple processes, that admit computationally convenient
properties. They are, however, sufficiently general to characterise properties of
many practical processes, and thus appear frequently in applications6. The fol-
lowing definition is given according to [Shiryaev 1996, p. 564].

6. For example, the recursive Bayesian estimation discussed in Chapter 3, is based on a Markov
chain model of the estimated quantity.
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x1 x2x0

Figure 2.3: A Bayesian network graph representing a Markov chain.

Definition 2.34 Let M0 ⊂M1 ⊂ · · · ⊂ M be a sequence of σ-algebras, and let
(xk)k∈N be a sequence of random elements xk : Ω → X, such that σ(xk) ⊂ Mk,
i.e., each xk is Mk-measurable. The sequence xk is a Markov chain (with
respect to P ), if

P (xk ∈ B | Mn)
a.s.
= P (xk ∈ B | xn)

for all k ≥ n ≥ 0 and all measurable B.

If all singletons are measurable, i.e. {x} ∈ N , the space (X,N ) is called a phase
space. Then, the Markov chain is characterised by the initial distribution π(B),
and the one-step transition probabilities Pk(x;B) such that

π(B) = P (x0 ∈ B) Pk(x;B)
a.s.
= P (xk ∈ B | xk−1 = x)

A regular conditional probability Pk(xk−1;B) is often called a transition ker-
nel [Robert and Casella 1999, p. 141]. In this thesis, only such Markov chains
are considered, that admit a transition kernel. A Markov chain expressed as a
Bayesian network is depicted in Figure 2.3.

Example 2.35 If X is a finite set with n elements, the conditional probability
distributions P (xk ∈ B | xk−1) can be characterised by the n × n transition
matrices [Pk]ij = P (xk = xj | xk−1 = xi). ♦

2.8.3 Poisson Process

A continuous-time process (nt)t≥0 is a counting process, if nt : Ω→ N represents
the total number of events that have occurred up to time t [Ross 1983, p. 31].
Consequently, if s < t, then nt − ns is the number of events that have occurred
in interval (s, t]. A counting process has independent increments, if the numbers
of events occurring in disjoint time intervals are independent.

Definition 2.36 A counting process (nt)t≥0 is a Poisson process with rate
η ≥ 0, if the following properties are satisfied.

1. n0 ≡ 0.

2. The process has independent increments.

3. The number of events in any interval of length t is Poisson-distributed.
That is, for all s, t ≥ 0,

P (nt+s − ns = k) =
(ηt)k

k!
exp(−ηt), k ∈ N (2.10)
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where the parameter η determines the mean number of events occurring
within one time unit7.

The Poisson process is quite often used as a model for arrival times in queueing
applications.

2.9 Estimation Theory

This section covers some basic definitions and concepts of estimation theory. As
a whole, the field of estimation theory is wide, and this section is just a tip of
the iceberg. The reader with no prior knowledge on estimation theory can find a
good elementary introduction, for example, in [Kay 1993].

There are two schools in estimation theory: the Bayesian and the clas-
sical8. The classical estimation is based on the assumption that the estimated
parameter φ is nonrandom—fixed but unknown. In Bayesian estimation, the esti-
mated parameter φ is considered to be a random element in the same probability
space as the data.

2.9.1 Classical Estimation

Suppose that there is a parametrised family of random elements of the form
xφ : Ω → X where φ ∈ Φ. Similarly, there is a parametrised family of random
measures corresponding the random elements Pφ , Pxφ .

Definition 2.37 Suppose xφ1 , . . . ,x
φ
k are random elements with a fixed φ. A func-

tion ϕk : Xk → Φ is an estimator of the parameter φ.

It is clear, that the above definition is very general, and does not assume any
“good” properties for the estimator. The rest of this section is dedicated to sum-
marising the definitions of some desired properties of estimators [Kay 1993, p. 160;
van Trees 1968, pp. 64; 70].

Definition 2.38 Suppose Φ = Rd. That is, φ is a vector parameter. Denote

φ̂
k

= ϕk(x
φ
1 , . . . ,x

φ
k). The estimator ϕk is unbiased, if

E
[
φ̂
k

]
= φ, ∀φ ∈ Φ

where the expectation is taken componentwise. The estimators (ϕk)
∞
k=1 are said

to be asymptotically unbiased, if

E
[
φ̂
k

]
k→∞−−−→ φ, ∀φ ∈ Φ

The following property can be considered for more generally, in any metric space.

7. E [nt+s − ns] =
∑∞
k=0 k

(ηt)k

k! e−ηt = e−ηtηt
∑∞
k=0

(ηt)k

k! = e−ηteηtηt = ηt
8. also referred to as non-Bayesian, orthodox, and Fisher.
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Definition 2.39 Suppose that (Φ, d) is a metric space. The estimators ϕk are
consistent, if the estimators converge in probability to the true value. That is,
denote φ̂k = ϕk(x1, . . . ,xk), then for all ε > 0

P (d(φ̂k, φ)) > ε)
k→∞−−−→ 0

2.9.2 Bayesian Estimation

As mentioned, In Bayesian estimation it is assumed that the estimated parameter
φ is a random element. So, suppose that φ : Ω → Φ and (xk : Ω → Xk)k∈N are
random elements. Based on these assumptions, the definition of a general Bayes
estimator can be given [Kay 1993, p. 342].

Definition 2.40 Denote φ̂k = ϕk(x1, . . . ,xk). The Bayes risk of an estimator
ϕk is the expected cost,

R(ϕk) = E
[
c(φ̂k,φ)

]

where c : Φ2 → [0,∞] is the Bayes cost function. The Bayes estimator ϕk is
the one minimising the Bayes risk. That is, ϕk is the Bayes estimator, if

R(ϕk(x1, . . . ,xk)) ≤ R(ϕ′k(x1, . . . ,xk))

for any other estimator ϕ′k.

The definition of the Bayes estimator is very general. The choice of the
cost function c affects the nature of the estimator greatly. In the following, some
of the most common choices of the cost function are listed. The cost functions
are given in the case of a vector parameter, Φ = Rd [Kay 1993, pp. 342–344].

The mean square error cost: c(x, y) = ‖x− y‖2 (2.11)

The absolute error cost: c(x, y) = ‖x− y‖ (2.12)

The hit-or-miss cost: c(x, y) =

{
0, ‖x− y‖ ≤ ∆/2

1, ‖x− y‖ > ∆/2
(2.13)

where ∆ is a “small” positive number. The mean square error cost leads into
the expected a posteriori (EAP) estimator9. The EAP estimator can be given as
follows

ϕk(x1, . . . ,xk) = E
[
φ | x1, . . . ,xk

]

The absolute error cost leads into the median estimator. The hit-or-miss cost
function, as ∆ is decreased, leads into the maximum a posteriori (MAP) estima-
tor. If the joint distribution of φ and x1, . . . ,xk has a continuous density function
with respect to the Lebesgue measure, then the MAP estimator can be given as
follows.

ϕk(x1, . . . ,xk) = arg max
φ

f�|x1,...,xk(φ | x1, . . . ,xk)

9. Often also referred to as the mimimum mean square error (MMSE) estimator.
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if the maximum exists. The given cost functions can be extended to any metric
space, by replacing the norm ‖x− y‖ by d(x, y) in Equations (2.11)–(2.13). This
way, one can obtain Bayes estimators in general metric spaces.

Remark 2.41 The comparison of Bayes estimators and classical estimators can
be considered cumbersome. This is due to the different philosophy behind the
methods. The Bayes estimators are Bayes optimal, given the cost function they
minimise. However, it is natural that consistency (when applicable) is a desir-
able property of any estimator, also a Bayesian one. It is rather obvious, that
the Bayes estimates (of random variables or random vectors) are not, in general,
unbiased, since the prior distribution of the estimated parameter affects the esti-
mator. Asymptotical unbiasedness is a weaker condition, that should be fulfilled
also by the Bayes estimators (of random variables or random vectors).

2.9.3 Computation of Bayes Estimates

One may ask how to compute Bayes estimates in practice? This section provides
a partial answer, by providing theoretical background for computing the poste-
rior distribution. The practical computation or approximation of the posterior
distribution is discussed further in Chapters 3 and 4.

Suppose that there is a regular conditional probability of φ with respect
to x1, . . . ,xk. Then, one may define the following conditional probability.

P�|x1,...,xk(B) , P (φ ∈ B | x1 = x1, . . . ,xk = xk) (2.14)

This conditional distribution is referred to as the posterior distribution (given
the data x1 = x1, . . . ,xk = xk). So, suppose that the posterior distribution is
given. Then, one can obtain the Bayes estimate ϕk(x1, . . . , xk), since the Bayes
estimator is the function ϕk that minimises

∫

Φ

c(φ, ϕk(x1, . . . , xk))dP�|x1,...,xk(φ)

separately for all x1, . . . , xk ∈ X. This follows from the fact that the Bayes risk
can be written as follows.

R(ϕk) =

∫

Xn×Φ

c(ϕk(x1, . . . , xk), φ)dP�,x1,...,xk(φ, x1, . . . , xk)

=

∫

Xn

[∫

Φ

c(ϕk(x1, . . . , xk), φ)dP�|x1,...,xk(φ)

]
dPx1,...,xk(x1, . . . , xk)

This justifies the idea of Bayesian estimation: given the data x1 = x1, . . . ,xk =
xk, the posterior distribution of the estimated parameter, P�|x1,...,xk , contains all
the required information to extract any Bayes estimate. So, how to obtain the
posterior distribution given in Equation (2.14)? The generalised Bayes theorem
given next will provide means for that [Shiryaev 1996, p. 231].
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Theorem 2.42 (Bayes) Suppose x : (Ω,M) → (X,NX) is a random element,
and that there is a regular conditional probability P (B | x = x). In addition,
suppose that there is a nonnegative function ρ(ω;x) that is measurable with respect
to jointly both the arguments, such that

P (B | x = x) =

∫

B

ρ(ω;x)dν(ω), B ∈ G

where ν is a σ-finite measure on (Ω,G), and G ⊂ M is a σ-algebra. Let g :
(X,NX)→ (R,B(R)) be a measurable function, with E [|g(x)|] <∞. Then,

E [g(x) | G]
a.s.
=

∫
g(x)ρ(ω; x)dPx(x)∫
ρ(ω;x)dPx(x)

Proof. Define the following function for all B ∈ G.

Q(B) =

∫

B

g(x(ω))dP (ω) =

∫
g(x)P (B | x = x)dPx(x)

=

∫
g(x)

[∫

B

ρ(ω;x)dν(ω)

]
dPx(x)

=

∫

B

[∫
g(x)ρ(ω; x)dPx(x)

]
dν(ω)

where the last equality is due to Fubini’s theorem. Similarly, one can write for all
B ∈ G

P (B) =

∫
P (B | x)(ω)dP (ω) =

∫
P (B | x = x)dPx(x)

=

∫

B

[∫
ρ(ω;x)dPx(x)

]
dν(ω)

Then, the proposition follows from

E [g(x) | G] =
dQ

dP
a.s.
=

dQ/dν

dP/dν

where the last a.s.-equality is according to Theorem A.43. �

The following example gives the special case of the generalised Bayes theorem,
that is particularly useful in applications [Shiryaev 1996, p. 233].

Example 2.43 Suppose x : (Ω,M) → (X,NX) and y : (Ω,M) → (Y,NY )
are random elements. Also, suppose that P (y | x = x) is regular, and can be
represented as follows.

P (y ∈ B | x = x) =

∫

B

fy|x(y | x)dν(y)
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where ν is a σ-finite measure in (Y,NY ), and fy|x(y | x) is jointly measurable
with respect to both y and x. Then,

E [g(x) | y = y]
a.s.
=

∫
g(x)fy|x(y | x)dPx(x)∫
fy|x(y | x)dPx(x)

(2.15)

One can set g = χB, where B ∈ NX , and get that

P (x ∈ B | y = y)
a.s.
=

∫
B
fy|x(y | x)dPx(x)∫
fy|x(y | x)dPx(x)

(2.16)

Especially, if (x,y) have a joint density function with respect to the σ-finite
product measure (µ×ν) in (X×Y ), one can define fy|x(y | x) as in Equation (2.6).
Then, Equations (2.15) and (2.16) can be restated by replacing “dPx(x)” with
“fx(x)dµ(x)”. In particular, the following is true.

fx|y(x | y)
a.s.
=

fy|x(y | x)fx(x)∫
fy|x(y | x)fx(x)dµ(x)

This is one of the most common forms of the Bayes theorem. ♦
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Chapter 3

Recursive Bayesian Estimation

The main application in this thesis is target tracking based on the recursive Bayes-
ian estimation framework. Recursive Bayesian estimation, often referred to as fil-
tering1, is a framework that is also used in many other applications, e.g. speech
recognition, optimal control, computer vision, econometrics, and molecular biol-
ogy, just to mention few [Doucet et al. 2001; Liu 2003].

This chapter outlines the theory of recursive Bayesian estimation. First,
the underlying probabilistic model, the state-space model (SSM), is described in
Section 3.1. Once the model is specified, Section 3.2 describes, in a conceptual
level, how the inference in a SSM can be performed recursively. The inference is
based on recursive computation of the posterior distribution, given the observed
data. Having the recursion implemented, an estimate, or several estimates, can be
extracted from the posterior distribution. Finally, Section 3.3 reviews some special
cases, in which exact inference is computationally tractable. Some approximative
methods are summarised as well, except for sequential Monte Carlo, for which
Chapter 4 is devoted.

3.1 State-Space Model

Quite often, in applications, the probabilistic model is determined by a signal
process, which is a Markov chain (xk)k∈N, where xk : Ω→ X. In addition, there
is a separate observation process (yk)k∈Z+ , where yk : Ω→ Yk. The observations
yk are assumed conditionally independent given the current state xk = xk. That
is,

P (yk ∈ B | x0:n,y1:n\k)
a.s.
= P (yk ∈ B | xk) (3.1)

P (xk ∈ B | x0:k−1,y1:k−1)
a.s.
= P (xk ∈ B | xk−1) (3.2)

for all k ≥ 1 and n ∈ N. The notation xa:b, where a ≤ b, denotes the set
{xa, . . . ,xb}. Similarly, x0:n = x0:n will denote xi = xi for all 0 ≤ i ≤ n. In
addition, y1:n\k means all {y1, . . . ,yn}, except yk.

1. Sometimes, the terms “stochastic filtering” and “optimal filtering” are used to distinguish
recursive Bayesian estimation, e.g., from frequency-selective filtering in signal processing.

25
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x1 x2x0

y1 y2

Figure 3.1: A Bayesian network graph representing a state-space model.

This general model is referred to as the state-space model (SSM). The
model is depicted as a Bayesian network in Figure 3.1. Intuitively, SSM includes
an unknown, dynamically changing parameter xk. There are noisy measurements
yk, which depend on xk in some known manner. In the following, the conditional
probability distributions P (yk ∈ B | xk) and P (xk ∈ B | xk−1) are referred to as
the measurement model, and the dynamic model, respectively.

3.2 Bayes Recursion

Before the recursive computation of the posterior distribution can be presented,
some additional regularity assumptions are needed. It is required that both the
dynamic model and the measurement model are regular conditional probabilities.
In addition, it is assumed that the measurement model admits the following
representation

P (yk ∈ B | xk = xk) =

∫

B

gk(yk | xk)dνk(yk)

where νk is a σ-finite measure on Yk. That is, gk(yk | xk) is the RND of the
measurement model. Since the posterior distributions are often considered, the
following notation is introduced for conciseness.

πm|n(B) , P (xm ∈ B | y1:n = y1:n)

If the above mentioned assumptions are satisfied, the propagation of the
posterior distribution in a SSM can be carried out using a procedure that is
referred to as the Bayes recursion.

Theorem 3.1 The marginal probability measures for k ≥ 1 can be obtained from
the following recursion.

πk|k−1(B)
a.s.
=

∫
Pk(xk−1;B)dπk−1|k−1(xk−1) (3.3)

πk|k(B)
a.s.
=

∫
B
gk(yk | xk)dπk|k−1(xk)∫
gk(yk | xk)dπk|k−1(xk)

(3.4)
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Proof. Equation (3.3) is due to the following equality, where one can replace
h(x) = χ←−xk(B)(x) for any measurable B.

E
[
h(xk) | y1:k−1

] a.s.
= E

[
E
[
h(xk) | y1:k−1,x0:k−1

] | y1:k−1

]
a.s.
= E

[
E [h(xk) | xk−1] | y1:k−1

]

where the first equality follows from property 2 in Theorem 2.21, since σ(y1:k−1) ⊂
σ(y1:k−1,x0:k−1). The second equality is due to the independence assumption in
Equation (3.2). The proof of Equation (3.3) is omitted for brevity. It is given,
e.g., in [Doucet et al. 2001, pp. 39–41]. �

Suppose next, that the dynamic model, i.e. the Markov transition kernels,
have a RND with respect to a σ-finite measure µ on X. That is,

P (xk ∈ B | xk−1 = xk−1) = Pk(xk−1;B) =

∫

B

fk(xk | xk−1)dµ(xk)

In addition, suppose that the initial distribution π0|0 has RND p0|0 = dπ0|0/dµ.
Then, the Bayes recursion can be given in terms of densities, as follows.

pk|k−1(xk)
a.s.
=

∫
fk(xk | xk−1)pk−1|k−1(xk−1)dµ(xk−1) (3.5)

pk|k(xk)
a.s.
=

gk(yk | xk)pk|k−1(xk)∫
gk(yk | x′k)pk|k−1(x′k)dµ(x′k)

(3.6)

This form of the Bayes recursion can be considered sufficient for most applica-
tions. It is, however, sometimes convenient to consider the general form given in
Equations (3.3) and (3.4). This is the case in Section 4.5, when sequential Monte
Carlo methods are considered as sequential approximations of the posterior mea-
sure.

3.3 Inference

The computation of the posterior distribution using the Bayes recursion is a
form of Bayesian inference2. In general, Equation (3.4) cannot be computed in a
closed form. This section covers briefly methods for inference in recursive Bayes-
ian estimation. First, the tractable special cases are covered in Section 3.3.1, and
then some approximate solutions to the intractable cases are discussed in Sec-
tion 3.3.2. The methods are not covered thoroughly, since the main emphasis in
this thesis is on the sequential Monte Carlo approximation of the Bayes recur-
sion, which is discussed in Chapter 4. Furthermore, approximate inference in some
more application-specific models is discussed in Chapter 6.

2. In general, Bayesian inference may refer to computation of any posterior marginal distri-
bution, or any Bayes estimate from some posterior distribution.
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3.3.1 Exact Inference

There are two special cases, in which the Bayes recursion can be performed in a
closed form. The first special case is when the random elements in the Markov
chain are finite. Then, the SSM is referred to as a hidden Markov model
(HMM)3. Inference in a HMM can be performed in a closed form, since the inte-
grals in Equation (3.3) reduce to finite summations, and the marginal densities4

pk|k can be represented as n-tuples5. The recursion can be given in the following
form [Ristic et al. 2004, p. 9].

pk|k−1(xk) =
∑
x∈X

fk(xk | x)pk−1|k−1(x) (3.7)

pk|k(xk) =
gk(yk | xk)pk|k−1(xk)∑
x∈X gk(yk | x)pk|k−1(x)

(3.8)

The above HMM recursion requires O(d2) operations, since the prediction in
Equation (3.7) requires d2 summations and products. The update in Equation
(3.8) requires O(d) operations, since pk|k(xk) ∝ gk(yk | xk)pk|k−1(xk).

The second model that admits a tractable inference is the case where
X = Rn and Y = Rm, and the conditional probabilities are linear-Gaussian, i.e.,
for all B ∈ B(Rn) and C ∈ B(Rm),

P (xk ∈ B | xk−1 = x) = N(B; Akx,Qk)

P (y
k
∈ C | xk = x) = N(C; Hkx,Rk)

(3.9)

where Ak, Hk are n×n and m×n real matrices, and Qk, Rk are positive definite
and symmetric n×n and m×m matrices. In this case, the model is referred to as
a Kalman filter model (KFM). In a KFM, the marginal densities6 pk|k can be
represented by their mean vectors and covariance matrices, since πk|k is always
Gaussian. The update recursions for the mean vector and the covariance matrix
can be given as follows [Murphy 2002, Section 3.6.1]. First, πk|k−1 is a Gaussian
with mean and covariance given in the following equation.

mk|k−1 = Akmk−1|k−1 (3.10)

Pk|k−1 = AkPk−1|k−1AT
k + Qk (3.11)

3. This terminology is not used by all. Some authors talk about HMMs, when they mean what
is called a SSM here; some refer to SSMs, meaning the model what is introduced here to be a
KFM.
4. RNDs with respect to the counting measure in the finite set X.
5. That is, the ordered sets with n elements. In this thesis, the term “vector” is designated to
elements of a vector space.
6. RNDs with respect to the Lebesgue measure in Rn.
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Then, the moments of πk|k can be obtained as follows.

v = y
k
− Hkmk|k−1

S = HkPk|k−1HT
k + Rk

K = Pk|k−1HT
k S−1

mk|k = mk|k−1 + Kv (3.12)

Pk|k = Pk|k−1 −KSKT (3.13)

where v, S, and K are auxiliary variables, which are referred to as the innovation,
covariance of the innovation, and the Kalman gain, respectively. That is, the KFM
recursion requires only matrix multiplications and summations, and inversion of
one positive definite and symmetric matrix.

The model in Equation (3.9) can be expressed also as a generative model
as follows.

xk = Akxk−1 + uk
y
k

= Hkxk + vk
(3.14)

where uk and vk are independent zero-mean nondegenerate Gaussian random
vectors with covariance matrices Qk and Rk, respectively.

3.3.2 Approximate Inference

One straightforward method for approximating the Bayes recursion is to discre-
tise the state space X [Arulampalam et al. 2002; Bergman 1999; Stone et al.
1999]. Then, the SSM reduces into a HMM, which admits exact inference. Often,
discretisation leads to practically infeasible inference, since the number of discreti-
sation points will become large. This is the case, e.g., when X = Rn where n is
large. For example, in a six dimensional case, where each dimension is discretised
into one hundred values leads to 1012 discretisation points, which can be consid-
ered infeasible in practice. This problem, sometimes referred to as the “curse of
dimensionality”, is stated to be overcome by the sequential Monte Carlo methods
[Crisan and Doucet 2002, p. 744], which are discussed in Chapter 4. They can be
considered to provide an alternative, “stochastic discretisation” method.

Many times, X = Rn and Y = Rm, i.e. xk and y
k

are random vectors,
but the distributions are not exactly linear-Gaussian, but rather close to. That
is, they are not strongly nonlinear, or non-Gaussian. Instead of Equation (3.14),
one has a generative model that can be written as follows

xk = ak(xk−1,uk)

y
k

= hk(xk,vk)
(3.15)

where ak : Rn ×Rp → Rn and hk : Rn ×Rq → Rm are measurable functions, and
uk and vk are nondegenerate Gaussian random vectors in Rp and Rq, respectively.
If ak and hk are differentiable, then a very popular method, that has also been
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applied to real-life applications, is the extended Kalman filter (EKF) [Arulam-
palam et al. 2002; Fearnhead 1998]. EKF is based on a first-order approximation
(local linearisation) of the functions ak and hk, in the neighbourhood of the previ-
ous posterior mean mk−1|k−1 and of the predicted mean mk|k−1, respectively. This
linearisation essentially converts the model sequentially to a KFM, in which the
update can be performed.

Recently, alternative methods have been proposed to replace the EKF. For
example, the unscented Kalman filter (UKF) [Wan and van der Merwe 2000] and
the central difference filter (CDF) [Ito and Xiong 2000; Nørgaard et al. 1998] have
shown superior performance compared to the EKF, at least in some applications.
All these algorithms suffer from the same drawback, though: they constrain the
posterior distribution πk:k to a Gaussian. If the true posterior distribution is very
far from Gaussian, e.g. multimodal, the approximation is evidently poor, which
leads into unexpected behaviour of these algorithms. A more flexible approach
than EKF, UKF, or CDF is to consider a sum of Gaussians approximation of the
posterior distribution [Alspach and Sorenson 1972; Ito and Xiong 2000]. However,
the algorithms propagating a sum of Gaussians tend to be computationally more
complicated than the Gaussian approximations.



Chapter 4

Sequential Monte Carlo

Monte Carlo simulation methods have been used by statisticians for decades1.
The increasing computing capabilities have enabled much more complicated sim-
ulation based approaches to be used in practice [Robert and Casella 1999]. The
sequential Monte Carlo (SMC) methods, which are Monte Carlo approximations
of the Bayes recursion, have gained much attention lately in many applications,
including computer vision, target tracking, and many other fields [Doucet et al.
2001].

This chapter includes the basic concepts related to SMC. The Monte Carlo
and importance sampling approaches are reviewed in Sections 4.1 and 4.2. The
sequential importance sampling is introduced in Section 4.3, and the added re-
sampling step in Section 4.4. Section 4.5 provides an alternative view of the Monte
Carlo algorithms: as approximations of probability measures. Since the variety of
different SMC methods is huge, this chapter can give only a coarse view. The
collection edited by [Doucet et al. 2001] contains some theoretical discussion,
practical applications, and a comprehensive list of references2.

4.1 Monte Carlo

The Monte Carlo simulation method can be used to approximately compute ex-
pectation values for functions of random elements using independent samples of
random elements.

Definition 4.1 Let h : X → R be a measurable function, and x(1), . . . ,x(n) be n
independent and identically distributed random elements x(i) : Ω → X having a
distribution Px. The Monte Carlo estimate of the expected value of h(x(i)) is

mn =
1

n

n∑
i=1

h(x(i)) (4.1)

1. “The Monte Carlo method” was presented with this name by Metropolis and Ulam [1949],
but the method dates back to as early as the 18th century [see, e.g. Liu 2003].
2. The Web page http://www-sigproc.eng.cam.ac.uk/smc/ contains also an extensive and
up-to-date list of publications, demos, and an FAQ related to SMC.

31
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Note that mn : Ω→ R is a random variable. In a practical simulation, one often
deals with one realisation of mn.

The Monte Carlo estimate converges almost surely, mn
a.s.−−→ E

[
h(x(1))

]
,

if the expectation is finite, due to Theorem 2.31 (Strong Law of Large Numbers).
Of course, the theorem only suggests that mn(ω) converges for a.e. ω ∈ Ω, but
does not give any bounds of variance for mn with fixed n.

If h(x(1)) has a finite second moment, the speed of the convergence can
be assessed, for denote the residual en = mn − E

[
h(x(1))

]
. Then, one obtains

V [mn] = V [en] =
1

n2
V

[
n∑
i=1

h(x(i))

]
=

1

n
V
[
h(x(1))

]

since h(x(i)) are independent. The Chebyshev’s inequality (Theorem 2.14) can be
used to give upper confidence bounds for absolute deviation of mn. In addition, if
h(x(1)) has a finite second moment, the conditions of the Central Limit Theorem
are satisfied, which states that

√
n

V [h(x(1))]
en

d−→ N(·; 0, 1)

Robert and Casella [1999] write that this information can be used to construct a
convergence test, and give approximate confidence bounds.

Remark 4.2 Sometimes the term Monte Carlo integration is used in the
literature. This term is due to the fact that taking expectation is, in general,
integration. Thus, Monte Carlo simulation can be considered also as a numerical
integration method, that applies to certain kinds of integrals, i.e. such integrals
that may be considered expectations.

4.2 Importance Sampling

There are many situations in which drawing samples straight from the distribution
Px is either infeasible, or gives a high-variance estimator. In that case, one method
that can be used is the importance sampling (IS) [Robert and Casella 1999]. In IS,
there is another distribution Pz, from which independent samples z(1), . . . , z(n)

can be drawn. In the following, we refer Px to as the target distribution,
whereas Pz is referred to as the importance distribution.

Definition 4.3 Let z(1), . . . , z(n), z(i) : Ω → X be independent and identically
distributed samples form the importance density fz. In addition, let the target
density be fx, and let h : X → R be a measurable function. The importance
sampling estimate of E [h(x)] is

mn =
1

n

n∑
i=1

h(z(i))
fx(z(i))

f ∗z(z(i))
, where f ∗z(z) =

{
fz(z), fz(z) > 0

1, fz(z) = 0
(4.2)
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The IS estimate is often written in the following form

mn =
n∑
i=1

w(i)h(z(i)) where w(i) =
fx(z(i))

nf ∗z(z(i))
,

where w(i) are referred to as importance weights. When IS is applied, the collec-
tion of pairs {(z(i),w(i))}ni=1 is often referred to as the set of weighted samples or
particles, especially if the function h is not fixed beforehand, or expectations of
several functions are considered [Liu 2003].

Proposition 4.4 Sufficient condition for a.s. convergence of the IS estimate,
mn

a.s.−−→ E [h(x)] is that Px � Pz, i.e. Px(A) = 0 whenever Pz(A) = 0. Especially,
the estimate converges a.s., if {x : fx(x) > 0} ⊂ {x : fz(x) > 0}.3

Proof. Let N = {z : fz(z) = 0}. Then, since fz must be measurable, N is
measurable. The measure of N is zero, since

Pz(N) =

∫

N

dPz =

∫

N

fz(x)dµ(x) = 0

By assumption, then Px(N) = 0, and it follows that

E [h(x)] =

∫

S

h(x)fx(x)dµ(x) =

∫

S\N
h(x)fx(x)dµ(x)

=

∫

S\N
h(x)

fx(x)

f ∗z(x)
fz(x)dµ(x) = E

[
h(z)

fx(z)

f ∗z(z)

]

The functions fx, fz, f
∗
z , and h are measurable, so their products and reciprocals

are measurable as well. Now, it holds that

mn
a.s.−−→ E

[
h(z)

fx(z)

f ∗z(z)

]
= E [h(x)]

That is, if the expectations are finite, the IS estimate converges as a regular Monte
Carlo estimate. Clearly, if {x : fx(x) > 0} ⊂ {x : fz(x) > 0}, then Px � Pz. �

It is worth noticing, that if Px � Pz, then there are densities fx and fz with
respect to Pz, given as follows fx = dPx/dPz and fz = dPz/dPz ≡ 1.

This sufficient condition of the convergence of the IS estimate is rather
easy to fulfil. One should notice, that this does not mean it is irrelevant how

3. The book of Robert and Casella [1999] describes the condition supp(fz) ⊃ supp(fx) suf-
ficient for convergence, but do no specify what they mean by support (or density). Common
definition of support, the closure of the set {x : f(x) 6= 0}, (see, e.g. [R̊ade and Westergren
1998]), does not guarantee convergence. For example, suppose fx(x) = 1, whenever x ∈ [0, 1],
and zero otherwise, and fz(x) = 1 whenever x ∈ [1, 2] ∪ (Q ∩ [0, 1]), and zero otherwise. Then,
the both are density functions (with respect to the Lebesgue measure), specify probability
measures, and supp(fz) = [0, 2] ⊃ [0, 1] = supp(fx), but mn

a.s.= 0.
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Figure 4.1: Examples of weight distributions in importance sampling with 200
samples and different choices of the importance distribution. The height
of the stems corresponds to the weight wi.

the importance distribution fz is chosen. On the contrary, a proper selection of
fz plays a significant role in the practical usability of the IS estimate. Firstly, if
fz is selected so that the ratio fx/fz is unbounded, the variance of the estimate
may well be infinite. Secondly, even if the ratio is bounded, the selection of fz
may change the magnitude of the variance of the estimate. Next, an illustrative
example of different choices of the importance distribution are given, which should
appeal to reader’s intuition.

Example 4.5 Figure 4.1 shows examples of the weighted sample sets, when the
target distribution fx is the Erlang distribution given by the density function

fx(x) =
(λx)n−1

(n− 1)!
λe−λx

with parameters n = 2 and λ = 2, which results in E [x] = n/λ = 1, V [x] =
n/λ2 = 0.5. The chosen importance distributions fz are shown in Figures 4.1
(a)–(c). In figure (a), fz is the uniform distribution in the interval [0, 20]. In
figures (b) and (c), fz is a Gaussian distribution with parameters E [z] = 0.8, and
V [z] = 1; and E [z] = 4, and V [z] = 1, respectively.

Clearly, a large mismatch of the importance distribution fz and the target
distribution fx in Figure 4.1 (c) results in a large variation in the importance
weights. It is obvious, that e.g. the estimate of E [x] would have a much higher
variance in the case of Figure 4.1 (c) than in Figure 4.1 (b), where the importance
distribution resembles more the target distribution. ♦

In some applications, a different importance sampling scheme is convenient
to use. The alternative IS estimate can be given in the following form [Doucet
et al. 2001; Geweke 1989; Liu 2003].

m′n =
n∑
i=1

w(i)h(z(i)), where w(i) =
fx(z(i))/f ∗z(z(i))∑n
i=1 fx(z(i))/f ∗z(z(i))

(4.3)

where wi are the normalised importance weights. The advantage of this method
is that one needs to know the density functions fx and fz only proportionally,
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since the weights w(i) are always normalised to sum to unity. The connection
between the estimates in Equations (4.3) and (4.2) is

m′n =
1∑n

i=1 fx(z(i))/f ∗z(z(i))

n∑
i=1

h(z(i))
fx(z(i))

f ∗z(z(i))
=

n∑n
i=1 fx(z(i))/f ∗z(z(i))

mn

The estimate given in Equation (4.3), is biased unlike the one given in Equa-
tion (4.2) [Liu 2003]. The estimate is, however, asymptotically unbiased [Doucet
et al. 2001, p. 8].

Remark 4.6 In the scope of this thesis, IS is applied because samples cannot
be drawn, or are hard to draw directly from the target distribution. In general,
however, IS may also be applied to accelerate the convergence of a Monte Carlo
estimate. For example, consider a situation in which the function h(x) is very
“spiky”. That is, the function has value zero, or almost zero, with most probable
values of x. Then, the importance distribution can be chosen so that less samples
are drawn in the regions where h(x) ≈ 0. In fact, [Robert and Casella 1999,
p. 84] prove, that the importance distribution, that minimises the variance of the
estimate, has the following density.

g∗(x) =
|h(x)|fx(x)∫ |h(x)|fx(x)dµ(x)

This result is impractical, since the evaluation of the integral in the denominator
is almost the expectation that was to be approximated with IS in the first place.
However, if one uses the biased estimate given in Equation (4.3), the denominator
need not be known.

4.3 Sequential Importance Sampling

Suppose that the model at hand is the state-space model introduced in Chapter 3.
Since the Bayes recursion given in Section 3.2 is generally intractable to compute,
one may consider applying Monte Carlo methods. The computation of the Bayes
estimates involves conditional expectations. In general, one needs to obtain the
following expectation for each k ∈ N

E [h(x0:k) | y1:k = y1:k] =

∫
h(x0:k)dπ0:k|k(xk) (4.4)

for some measurable function h : Xk+1 → R. Most often, the function of interest
depends only on the latest state element, xk. Sequential importance sampling
(SIS) can be formulated as a regular importance sampling estimation of Equa-
tion (4.4).

The importance distribution must admit certain properties, to allow the
estimate to be computed sequentially. Suppose that there is another process
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(zk)k∈N, for which the conditional probability P (z0:k | y1:k = y1:k) has the density
q0:k(z0:k | y1:k) which admits the following factorisation [Doucet et al. 2000].

q0:k(z0:k | y1:k) = q0(z0)
k∏
j=1

qj(zj | z0:j−1, y1:j) (4.5)

where q0 is a density, and for all 1 ≤ j ≤ k and all z0:j−1 and y1:j, the functions
qj(· | z0:j−1, y1:j) are density functions. Furthermore, assume that the transition
kernel of the Markov chain (xk)k∈N has the density fxk|xk−1

, and the prior distri-
bution Px0 has the density px0 . Then, the prior distribution of x0:k has a density
that can be represented in terms of the prior and the kernel densities as follows.

fx0:k
(x0:k) = px0(x0)

k∏
j=1

fxj |xj−1
(xj | xj−1)

Suppose that z
(1)
0 , . . . , z

(n)
0 are IID samples drawn from the distribution with the

density q0|0. It is obvious, that the importance weights can be computed as follows.

w
(i)
0 ∝

px0(z
(i)
0 )

q0(z
(i)
0 )

Then, suppose that z
(1)
0:k, . . . , z

(n)
0:k are IID samples from the distribution with the

density q0:k|k(z0:k | y1:k). In this case, the importance weights can be computed as
follows.

w
(i)
k ∝

p0:k|k
q0:k

∝ p0(z
(i)
0 )
∏k

j=1 gj(yj | z(i)
j )fzj |zj−1

(z
(i)
j | z(i)

j−1)

q0(z
(i)
0 )
∏k

j=1 qj(z
(i)
j | z(i)

0:j−1, y1:j)

∝ p0:k−1|k−1

q0:k−1|k−1

gk(yk | z(i)
k )fzk|zk−1

(z
(i)
k | z(i)

k−1)

qk(z
(i)
k | z(i)

0:k−1, y1:k)

∝ w(i)
k−1

gk(yk | z(i)
k )fzk|zk−1

(z
(i)
k | z(i)

k−1)

qk(z
(i)
k | z(i)

0:k, y1:k)
(4.6)

where the proportionalities follow from the Bayes recursion, and the assumed
factorisation of q0:k given in Equation (4.5). The derivation above shows that the
importance weights can be computed recursively. Furthermore, it is easy to see,
that the samples z

(i)
0:k can be obtained recursively as well, by sampling z

(i)
j from

the distribution determined by the density qj(· | z(i)
0:j−1, y1:j). The SIS algorithm

is summarised in Algorithm 4.1.
Consider next the special case that the importance density is chosen to

be the unconditional distribution, i.e., q0 = px0 and qk = fxk|xk−1
. Consequently,
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z
(i)
0 ∼ q0

w
(i)
0 ←

px0(z
(i)
0 )

q0(z
(i)
0 )

for k = 1, 2, . . . do
z

(i)
k ∼ qk(· | z(i)

0:k−1, y1:k)

ŵ
(i)
k ← w

(i)
k−1

gk(yk | z(i)
k )fzk|zk−1

(z
(i)
k | z(i)

k−1)

qk(z
(i)
k | z(i)

0:k, y1:k)

w
(i)
k ←

ŵ
(i)
k∑n

i=1 ŵ
(i)
k

E [h(x0:k) | y1:k = y1:k] ≈
n∑
i=1

w
(i)
k h(z

(i)
0:k)

end for

Algorithm 4.1: The SIS algorithm. The symbol “∼” means that the random ele-
ment is distributed according to the given density, and “←” denotes sub-
stitution.

the samples z
(i)
0:k are distributed according to the unconditional distribution Px0:k

.
Theoretically, this is a sensible decision, since the posterior distribution is abso-
lutely continuous with respect to the unconditional distribution, π0:k|k � Px0:k

.
In this special case, the weight update formula given in Equation (4.6) reduces
into the following.

w
(i)
k ∝ w(i)

k−1gk(yk | z(i)
k )

The next example illustrates how SIS works in this situation.

Example 4.7 Suppose that the Markov chain is homogeneous, i.e. the transition
kernel is independent time. Suppose that the prior and the transition kernel have
the form.

P (x0 ∈ B) = N(B; 0, 0.1)

Pk(x;B) = N(B;x, 1)

Figure 4.2 (a) shows 50 simulated IID sample paths of x0:20. The measurements
yk are assumed distributed as follows.

P (yk ∈ B | k = xk) = N(B;x, 0.11)

and the measurements y0:20 can be given as yk = 10(k+ 1)/21 + 0.05. It is easy to
show4, that the prior and the posterior distribution of x20 can be given as follows.

P (x20 ∈ B) = N(B; 0, 20.1)

P (x20 ∈ B | y1:20 = y1:20) = N(B; 10, 0.1)

4. In fact, this model is linear-Gaussian, so Equations (3.10)–(3.13) provide the result.
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Figure 4.2: (a) Sample paths of a homogeneous Markov chain. (b) The prior
density and the posterior density of x20, and the weighted samples when
prior distribution is used as importance distribution.

In this case, the prior and the posterior distribution have a rather large mismatch,
with the property that the prior is much wider than the posterior. The prior and
posterior distributions are depicted in Figure 4.2 (b). ♦

In practice, it often occurs that the posterior distribution πk|k is far from
the prior distribution Pxk , as it is in Figure 4.2 (b). This being the case, most of

the SIS samples x
(i)
k have very small weight values, which in turn means that the

samples have very little effect on the estimate5

E [h(xk) | y1:k = y1:k] ≈
n∑
i=1

w
(i)
k h(x

(i)
k )

Consequently, the variance of the estimate is high. This phenomenon, that only
few samples have a nonnegligible weight, is known as sample degeneracy [Doucet
et al. 2001]. It may occur, that an importance distribution better than the prior
is hard to find. Fortunately, other methods exist for overcoming the problem of
degeneracy. The next section describes resampling, which addresses the issue.

4.4 Sequential Importance Sampling with Resampling

Since the basic SIS framework does not work in practice due to sample degener-
acy, one needs methods for overcoming the problem. One, rather straightforward
method is resampling [Gordon et al. 1993]. Resampling can be considered in-
tuitively as stochastic pruning, in which the least likely particles are discarded,
while the most promising ones are duplicated. The resampling algorithm shown
in Algorithm 4.2 was proposed by Gordon et al. [1993]. In brief, the algorithm

5. Provided that h is assumed regular enough, e.g., continuous and bounded.
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s0 ← 0
sj ←

∑j
i=1w

(i) for all 1 ≤ j ≤ n
for i = 1, . . . , n do
u ∼ U(0, 1).
Find such j, that sj−1 < u ≤ sj
ẑ(i) ← z(j)

ŵ(i) ← 1/n
end for

Algorithm 4.2: Resampling algorithm. The input to the algorithm is a set of

weighted samples (z(i),w(i))ni=1, and the output is the set of resampled

samples (ẑ(i), ŵ(i))ni=1.
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Figure 4.3: (a) The set of weighted samples (b) The resampled samples.

can be described just to pick n samples from the discrete distribution determined
by weighted samples (z(i),w(i))ni=1. The core idea of resampling can be best in-
troduced in terms of an example.

Example 4.8 Consider the set of weighted samples shown in Figure 4.3 (a)
(which is reproduction of Figure 4.1 (c)). Resampling, Algorithm 4.2, is applied
to the set of weighted samples, and the resulting samples are shown in Figure 4.3
(b). The duplicated particles are shown as stacked for visualisation. The resam-
pling can be considered, in fact, some kind of stochastic discretisation of the set
of weighted samples. ♦

Of course, the duplications in the resampling algorithm are random, since
the n resampled samples are drawn at random. It is rather intuitive, that the ex-
pected number of the resampled duplicates of a sample z(i) is exactly proportional
to the weight of the sample w(i). Furthermore, the expectation of the IS approxi-
mation induced by a set of weighted samples is the same as the IS approximation



40 CHAPTER 4. SEQUENTIAL MONTE CARLO

0 5 10 15 20

−10

−5

0

5

10

k

x −15 −10 −5 0 5 10 15
0

0.5

1
Posterior

−15 −10 −5 0 5 10 15
0

0.5

1

x
20

Weighted samples

(a) (b)

Figure 4.4: (a) Sample paths of the bootstrap filter (b) The posterior density and
the weighted sample.

induced by the set of resampled samples. That is,

E [mn] = E [m̂n] where mn =
n∑
i=1

w(i)h(z(i)) and m̂n =
n∑
i=1

ŵ(i)h(ẑ(i))

However, resampling adds extra variance to the estimator [Carpenter et al. 1999].
Since resampling discards some samples and duplicates others, there is a loss of
diversity of particles. This phenomenon is referred to as sample impoverishment.

Since the variance is increased, it does not make sense to perform resam-
pling in the regular IS. For SIS, the resampling step provides a “trick” to reduce
the sample degeneracy. Such a SIS algorithm that includes resampling is referred
here to as a SISR algorithm6. The SISR algorithm proposed by Gordon et al.
[1993], which is referred to as the bootstrap filter, assumes that the importance
distribution is the prior density, and resampling is performed at each step.

Example 4.9 Consider the problem given in Example 4.7. The bootstrap filter
was applied to the same problem, and Figure 4.4 (a) shows the sample paths
of the bootstrap filter. The sample paths are “pruned” in the resampling step.
Figure 4.4 (b) shows the weighted samples corresponding to the posterior π20|20.
Comparing Figures 4.2 and 4.4 shows how the bootstrap filter concentrates the
samples sequentially, whereas in the case of a plain SIS, the samples are scattered
uncontrolled to much wider area. ♦

The bootstrap filter is only one specific SISR algorithm. There are many
other SISR algorithms, with different choices of the importance distribution and
the resampling algorithm. The resampling algorithm given in Algorithm 4.2 is per-
haps conceptually the simplest, but not the most efficient. There are algorithms
that perform resampling in O(n) time, and admit smaller variance [Carpenter

6. Sequential Importance Sampling with Resampling.



4.5. SMC AS MEASURE APPROXIMATION 41

z
(i)
0 ∼ px0

w
(i)
0 ← 1/n

for k = 1, 2, . . . do
z

(i)
k ∼ fxk|xk−1

(· | z(i)
k−1)

ŵ
(i)
k ← gk(yk | z(i)

k )

w
(i)
k ←

ŵ
(i)
k∑n

i=1 ŵ
(i)
k

E [h(x0:k) | y1:k = y1:k] ≈
n∑
i=1

w
(i)
k h(z

(i)
0:k)

if neff({w(i)
k }ni=1}) < nth then

(z
(i)
k ,w

(i)
k )ni=1 ← resample

[
(z

(i)
k ,w

(i)
k )ni=1

]

end if
end for

Algorithm 4.3: SISR algorithm with prior importance distribution and adaptive
resampling. The “resample” function refers to Algorithm 4.2.

et al. 1999; Kitagawa 1996]. There are also other methods proposed for enhanc-
ing the resampling [see, e.g, Doucet et al. 2001, pp. 230–234]. Furthermore, Doucet
[1998] suggests that resampling should not be performed in each iteration, but
adaptively. This method, adaptive resampling, is based on the estimated effective
sample size,

neff({w(i)
k }ni=1) =

1∑n
i=1(w

(i)
k )2

(4.7)

Note that 0 < neff ≤ n. The resampling procedure is carried out only if neff drops
below a predefined threshold 0 < nth ≤ n. Otherwise, wk and xk remain intact.
The SISR algorithm with prior importance distribution and adaptive resampling
is given in Algorithm 4.3.

Remark 4.10 Russell and Norvig [2003] outline the history of Sequential Monte
Carlo, describing that resampling dates back to 1975. The resampling approach
has been reinvented and renamed again since, with such names as sequential
importance-sampling resampling, particle filtering [Gordon et al. 1993], survival
of the fittest [Kanazawa et al. 1995], and Conditional Density Propagation (Con-
densation) algorithm [Blake and Isard 1997].

4.5 SMC as Measure Approximation

All the Monte Carlo methods considered in this thesis can be thought as approx-
imations of a probability measure. This approximation can be written as a finite
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sum of weighted delta measures, as follows

P n(A) =
n∑
i=1

w(i)δz(i)(A)

where (w(i),z(i))ni=1 constitute the set of weighted samples. The expectation in-
tegral can be considered as integration over this (random) measure.

E [h(x)] =

∫
hdPx ≈

∫
hdP n =

n∑
i=1

wih(xi)

One may notice, that the measure P n(A) is not necessarily a probability measure.
For example, if P n(A) corresponds to the IS method given in Definition 4.3, the
weights wi may not sum to unity. However, P n(A) is a measure, so integration
is meaningful, and results in the IS estimate.

If the random measures P n converge in distribution to Px, then by defi-
nition, the following holds for any bounded and continuous function h

lim
n→∞

E [h(zn)] = E [h(x)]

where the random elements zn are distributed according to P n. Equivalently, this
can be expressed as follows.

lim
n→∞

∫
h(x)dP n(x) =

∫
h(x)dPx(x)

Since almost sure convergence implies convergence in distribution (Theorem 2.29),
the random measure corresponding to the MC estimate given in Definition 4.1
converges in distribution to the true distribution. Similarly, if Px � Py, random
measure corresponding to the IS estimate given in Definition 4.3 converges in
distribution. The SIS estimate converges as well, if the posterior distribution is
absolutely continuous with respect to the importance distribution.

In light of the random measure perspective to the Monte Carlo approach,
the SISR algorithm can be considered as a sequential approximation of the pos-
terior measure π0:k|k. Let us go through an informal construction of the measure
approximation update. For detailed description, see e.g. [Crisan and Doucet 2002].

Suppose there is a set of weighted samples (z
(i)
0:k−1,w

(i)
k−1)ni=1 from the distribution

π0:k−1|k−1. That is, the random measure πk−1|k−1 approximates the true posterior,

π0:k−1|k−1 =
n∑
i=1

w
(i)
k−1δz(i)

0:k−1
≈ π0:k−1|k−1

One can obtain a set of weighted samples from (z
(i)
0:k, w̃

(i)
k ) by sampling each z

(i)
k

from qk(· | z0:k−1, y1:k), and computing the weights as follows.

w̃
(i)
k ∝

fxk|xk−1
(z

(i)
k | z(i)

k−1)

qk(z
(i)
k | z0:k−1, y1:k)
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Now, the predictive density is approximated as follows.

π0:k|k−1 =
n∑
i=1

w̃
(i)
k δz(i)

0:k
≈ π0:k|k−1

The approximation of the posterior distribution can then be obtained from the
Bayes recursion, Equation (3.4).

π0:k|k(B)
a.s.
=

∫
B
gk(yk | xk)dπ0:k|k−1(xk)∫
gk(yk | xk)dπ0:k|k−1(xk)

=

∑n
i=1 gk(yk | z(i)

k )w̃
(i)
k δz(i)

0:k
(B)

∑n
i=1 gk(yk | z(i)

k )w̃
(i)
k

That is, if one obtains the weights w
(i)
k according to Equation (4.6), the weighted

samples (z
(i)
0:k,w

(i)
k )ni=1 are from the posterior distribution, and they constitute an

approximation of the posterior distribution,

π0:k|k =
n∑
i=1

w
(i)
k δz(i)

0:k
≈ π0:k|k

It is not obvious, that π0:k|k will converge in distribution to π0:k|k, since the random

samples z
(i)
0:k are not independent, due to resampling. The reader is advised to

take a look on the recent survey paper of the convergence results obtained for
SISR [Crisan and Doucet 2002].
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Chapter 5

Random Sets

This chapter presents the concept of random sets which is one of the main topics
in this thesis. The chapter starts with Section 5.1 outlining the concept of ran-
dom set in a finite, discrete universe. The discrete universe case contains many
simplifications compared with the general case, providing intuitive view on the
subject. Section 5.2 covers briefly the general concept of random closed sets. After
that, the concept of random finite sets is presented in Section 5.3. Random finite
sets are the main topic of this chapter, since they are applied to target tracking
in Chapter 7.

5.1 Random Sets of Finite Universe

To get a feel of what a “random set” means, we examine first the case of random
sets of a finite universe. This introductory exploration of the finite universe case
serves us also as a very brief introduction to the theory of evidence (also known
as Dempster-Shafer reasoning) from the perspective of random sets.

5.1.1 Probability Measure and Belief Measure

Let U be a set with n elements. Enumerate the elements as U = {u1, u2, . . . , un}.
One can define a random set X : Ω → U , where U = P(U), the collection of all
subsets of U . A measure can be defined by assigning probabilities P (X = A) =
PX({A}) directly to each A ∈ U , since U is finite1. This probability assignment
is denoted in this section as mX(A) , PX({A}).

Sometimes, it is more convenient to determine a distribution using the
belief function

βX(A) , P (X ⊂ A) =
∑
B⊂A

mX(B) (5.1)

The belief function can be considered to be the counterpart of the cumulative
distribution function P (x ≤ x) of a random variable x in R. Notice, however,
that the collection of subsets U is only partially ordered with the inclusion relation
“⊂”.

1. The set P(U) contains 2n elements.

45
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The belief function βX is dual to the probability assignment mX . One
can obtain the probabilities from the belief function using the so called Möbius
inversion formula [Goodman et al. 1997]

mX(A) =
∑
B⊂A

(−1)|A\B|βX(B) (5.2)

Next, a simple example of the definition of a finite random set is given.

Example 5.1 Take a two-element set U = {a, b}. Then, the collection of the
subsets of U is U = {∅, {a}, {b}, {a, b}}. Define a probability for each event in U
so that

mX(∅) = 0.1, mX({a}) = 0.4, mX({b}) = 0.3, mX(U) = 0.2

From this probability assignment, one can compute the values of the belief func-
tion

βX(∅) = 0.1, βX({a}) = 0.5, βX({b}) = 0.4, βX(U) = 1.

It is easy to verify that the Möbius inversion formula in Equation (5.2) works. ♦

5.1.2 Connection with Dempster-Shafer Reasoning

The Dempster-Shafer (DS) reasoning, or the theory of evidence, deals with im-
precise evidence [Shafer 1976]. The theory can be considered to be a special case
of random sets in a finite universe, such that the probability of the empty set is
assumed zero. In the following, the terminology of DS reasoning is explained from
the perspective of random sets. Note, that this section is not intended to provide
introduction to the DS philosophy, but only lists some of the terms in the DS
reasoning as probability assignments of random sets.

The belief of a set V ⊂ U is the total belief that is consistent with V ,
i.e. the probability that X is contained in V ,

BelX(V ) =
∑
W⊂V

mX(W ) = βX(V )

The plausibility is the total weight of all events that do not contradict V , i.e. the
probability that X intersects V .

PlX(V ) =
∑

W∩V 6=∅
mX(W ) =

∑

W*{V
mX(W ) = 1− βX({V )

It is easy to see that Belm(V ) ≤ Plm(V ) for all V ⊂ U . The conflict between two
random sets X and Y with distributions mX and mY is defined as follows.

K(mX ,mY ) =
∑

W∩V=∅
mX(V )mY (W ) = 1−

∑

W∩V 6=∅
mX(V )mY (W )

If X and Y are assumed independent, the conflict is the probability that X and
Y do not intersect, K(mX ,mY ) = P (X ∩ Y = ∅).
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The orthogonal sum of two distributions mX and mY , also known as the
Dempster’s rule of combination is [Shafer 1976].

mX ⊕mY (V ) =
1

1−K(mX ,mY )

∑
W∩T=V

mX(W )mY (T )

Again, if X and Y are assumed independent, one can write

mX ⊕mY (V ) =

∑
W∩T=V mX(W )mY (T )∑
W∩T 6=∅mX(W )mY (T )

=
P (X ∩ Y = V )

P (X ∩ Y 6= ∅)
= P (X ∩ Y = V |X ∩ Y 6= ∅)

So, the Dempster’s rule of combination can be regarded as computation of the
probability distribution for the random set Z = X ∩ Y , where X and Y are
independent random sets, given the condition that Z is nonempty.

5.2 Random Closed Sets

The next topic that is covered concerns the random closed sets. The presentation
in this section is quite general. The space Θ of the random sets is not fixed, but
only assumed to be a locally compact, Hausdorff and separable (LCHS) (see
Appendix A for description of these terms). It is worth mentioning that the
Euclidean space Rd is such a space, since replacing the abstract space Θ with
Rd (or even R) in mind, one can get a better idea of the nature of the presented
concepts.

The collections of open, closed and compact sets of Θ are denoted by G,
F and K, respectively. For any A ⊂ Θ, we define the collections of closed sets
“missing” and “hitting”A

FA = {F ∈ F : F ∩ A = ∅} FA = {F ∈ F : F ∩ A 6= ∅}
respectively. Figure 5.1 depicts an example of these collections of sets. Using the
“hit” and “miss” collections, a topology on F can be defined. The topology is
generated by the subbase of the collections FK and FG where K ∈ K and G ∈ G.
The topology has the base [Matheron 1975]

DH/M =
{FK ∩ FG1 ∩ FG2 ∩ · · · ∩ FGn : n ≥ 0, K ∈ K, Gk ∈ G

}
(5.3)

This topology is called the hit-or-miss topology. The obtained topological space
(F ,DH/M) is LCHS [Matheron 1975].

Let us denote the Borel sets of the topological space by B(F). Then, we
may define a random closed set by a map X : Ω→ F which is measurable (with
respect to B(F)). The probability of an event A ∈ B(F) can be obtained as usual

PX(A) = P (
←−
X(A)) (5.4)

Since the probability measure PX is impractical to determine straightforwardly,
Matheron [1975] suggests that the measure is defined indirectly, using a set func-
tion T : K → [0, 1] having the following properties.
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(a) (b)

Figure 5.1: Some example sets in collections (a) FA and (b) FA. The set A is the
one with solid border, and the sets in the respective collections are those
with dotted border.

1. T (∅) = 0.
2. If {Ki} is a decreasing sequence2 of compact sets and ∩i→∞Ki = K, then

limi→∞ T (Ki) = T (K).
3. For any n ≥ 1 and compact sets K,K1, . . . , Kn, the functions Sn deter-

mined by the recursion

S1(K;K1) = T (K ∪K1)− T (K)

Sn(K;K1, . . . , Kn) = Sn−1(K;K1, . . . , Kn−1)

−Sn−1(K ∪Kn;K1, . . . , Kn−1)

have a nonnegative value.

Theorem 5.2 (Choquet) If the conditions 1–3 are satisfied, the function T de-
termines a unique probability measure on B(F) satisfying the following condition.

PX(FK) = T (K), ∀K ∈ K (5.5)

The function T is called the Choquet capacity functional [cf. Matheron 1975].
The reader may notice an analogy between the Choquet capacity functional and
the belief measure given in Equation (5.1), since PX(FK) = 1 − PX(FK) =
1− P (X ⊂ {K).

In the following, a simple example of a Choquet capacity functional is
given. The example is a special case of the example in [Goodman et al. 1997,
p. 95].

Example 5.3 Let Θ = R, and f : R → [0, 1] be an upper-semicontinuous func-
tion3. Then, the function T : K → [0, 1] defined by

T (K) = sup
x∈K

f(x)

is a capacity functional. Figure 5.2 exemplifies this definition. ♦

2. The sequence of sets is decreasing, if Ki ⊃ Kj for all i < j.
3. The function f is upper-semicontinuous, if for all x ∈ R and ε > 0 there exists such r > 0
that f(t) < f(x) + ε whenever ‖t− x‖ < r.
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0

1

a

b

K K K1 2 3

Figure 5.2: An example of a capacity functional defined using an upper-
semicontinuous function f : R → [0, 1]. In this example, T (K1) = 0,
T (K2) = a, and T (K3) = b.

5.3 Random Finite Sets

The presentation of random closed sets in Section 5.2 was kept general, without
fixing the space Θ. The space was only required to be LCHS. This section covers
a more specific class of random closed sets, the random finite sets (RFS). As the
name suggests, we allow the sets to contain only a finite number of elements. The
general definition of a RFS can be given as follows.

Definition 5.4 The random element X : Ω → F is a random finite set
(RFS), if for all ω ∈ Ω, the set is finite, i.e. |X(ω)| <∞. The random finite set
X is bounded4, if there is an integer M , so that |X(ω)| ≤M , for all ω ∈ Ω.

In the following, it is assumed that the space Θ is the hybrid space, intro-
duced in Section 5.3.1. The rest of this section is divided into seven subsections
whose content is briefly following. Section 5.3.2 outlines the connection between
the k-fold product spaces and the finite sets with exactly k elements. This connec-
tion is used to derive measures for k-element finite sets. Section 5.3.3 continues
by defining a measure to the finite set space, which is base of the set integral.
Section 5.3.4 introduces the belief measure of a RFS. The concept of the set
derivative is introduced in Section 5.3.5, and some general properties of the set
integral and the set derivative are given in Section 5.3.6. The last two sections
are dedicated for analysis of a RFS distribution. Section 5.3.7 discusses of the
probability hypothesis density, which can be considered as a “projection” of the
random set distribution into a density in the hybrid space. Section 5.3.8 out-
lines two estimators, that can be used to extract an estimate from a random set
distribution.

5.3.1 The Hybrid Space

In this thesis, the space Θ of finite random sets is assumed to be a so called
hybrid space [Goodman et al. 1997, p. 135]. The hybrid space S = Rd × U is the
Cartesian product of a d-dimensional Euclidean space Rd, and a finite discrete
space U . An element in this space (v, u) = s ∈ S consists of the Euclidean part

4. The definition of RFS given in [Goodman et al. 1997, p. 152] restricts RFS to be bounded.
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Figure 5.3: Example of a hybrid space R2 × {a, b, c}.

(vector) v ∈ Rd, and the discrete part u ∈ U . Figure 5.3 illustrates an example of
a hybrid space.

The hybrid space is endowed with the product topology of the Euclidean
topology in Rd, and the discrete topology in U . This means that open sets in S
are the sets of form W ⊂ S, where Wu = {v : (v, u) ∈ W} ⊂ Rd is open for all
“slices” u ∈ U . The closed and compact sets are determined similarly.5 The space
S is endowed with the product measure of the Lebesgue measure λ in Rd and the
counting measure c in U .

Definition 5.5 The product measure λ = λ× c on space S = Rd × U is referred
to as the hybrid Lebesgue measure.

The measurable sets in S are all such W ⊂ S, for which each “slice” Wu is
Lebesgue-measurable [Goodman et al. 1997, p. 136].

It is quite obvious, that the space S endowed with the measure λ is σ-
finite, since we may set Ei = (B0(i), U), for which λ(Ei) = |U |λ(B0(i)) < ∞ for
all i ∈ N, and clearly S = ∪iEi. Therefore, all subsets of S are σ-finite. According
to Fubini’s theorem, for all measurable sets W ⊂ S, it then holds that

λ(W ) =

∫

U

λ(Wu)dc(u) =
∑
u∈U

λ(Wu) (5.6)

and for each integrable f : S→ R it holds that
∫
fdλ =

∫

U

[∫

Rd
f(v, u)dλ(v)

]
dc(u) =

∑
u∈U

∫

Rd
f(v, u)dλ(v) (5.7)

The hybrid space S is endowed with the following metric.

d(s, s′) = ‖v − v′‖+ δu(u
′), where δu(u

′) =

{
1, u = u′

0, u 6= u′
(5.8)

where s = (v, u) and s′ = (v′, u′), and ‖ · ‖ denotes the Euclidean norm.

Theorem 5.6 The space S is locally compact, Hausdorff and separable (LCHS).

5. In the discrete topology, all sets are open, thus also closed. In a finite space, all sets are
compact.
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Proof. Suppose (u, v) = s ∈ S. One can pick open set Bs(1), for which Bs(1)
is closed and bounded in Rd, hence compact in S. Thus, S is locally compact.
It is obvious, that S is Hausdorff, for suppose (u′, v′) = s′ ∈ S, so that s 6= s′.
Then we can choose non-intersecting open neighbourhoods Bs(ε) and Bs′(ε), by
setting ε = d(s, s′)/2. The space Rd is known to be separable, with dense set Qd

(the rational vectors). The space S is then obviously separable, since each slice
Su = Rd is separable, and there is a finite number of slices. �

5.3.2 Product Spaces and Finite Sets

Throughout this section, the notations like F(k) and F(≤ k) are used, corre-
sponding to the closed sets with exactly k elements and the closed sets with no
more than k elements, respectively. Since the goal is to construct measures on
(F ,B(F)), it is important to figure out that such collections of sets are Borel in
the hit-or-miss topology [Goodman et al. 1997, p. 132].

Proposition 5.7 The collections F(≥ k), F(≤ k) and F(k) are open, closed,
and Borel, respectively, in F .

Proof. Define the collection

A(k) =
⋃{

k⋂
i=1

FGi : Gi ∈ G and Gi ∩Gj = ∅ for all i 6= j

}

The set A(k) is open in F , since it is union of open sets in F . Below, we show
that A(k) = F(≥ k), by first showing that A(k) ⊂ F(≥ k), and then the inverse.

Suppose C ∈ A(k). Then, there are such G1, . . . , Gk, that C intersects
each Gi, i.e. C∩Gi 6= ∅. Since Gi are disjoint, C must contain at least k elements,
i.e., C ∈ F(≥ k). Conversely, suppose C ∈ F(≥ k). Then, there are unique
s1, . . . , sk ∈ C. Since S is Hausdorff, there are disjoint open sets G1, . . . , Gk, for
which si ∈ Gi. It follows, that C ∩ Gi 6= ∅, and then C ∈ ∩ki=1FGi . Concluding,
C ∈ A(k).

Now, since F(≥ k) is open in F , a direct consequence is that F(≤ k) =
{F(≥ k + 1) is closed. Then, F(k) = F(≤ k)∩F(≥ k) is intersection of a closed
and an open set, so F(k) ∈ B(F). �

Next, we start to build a correspondence between the product spaces Sk =
×ki=1 S and the k-element finite sets on S. Consider the map η : Sk → F(k) defined
as follows.

η(s1, . . . , sk) = {s1, . . . , sk} (5.9)

Clearly, η is surjective. It is not injective, since η(s1, . . . , sk) = η(sπ1, . . . , sπk) for
any permutation π of integers from 1 to k. In addition, η is not defined at all in
the case any two of the arguments are same, si = sj for i 6= j.

To make η injective, a lexicographic ordering s ≺ s′ is introduced. Suppose
s = (v, u) ∈ S and s′ = (v′, u′) ∈ S. Define that s ≺ s′, if one of the following
statements is true.
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� u < u′

� u = u′ and v(1) < v′(1)
� u = u′, v(1) = v′(1) and v(2) < v′(2)

...
� u = u′, v(i) = v′(i), for all i < d, and v(d) < v′(d)

where v(i) denotes the i’th element of the vector v. The order in the finite set U
can be arbitrary total ordering, i.e. for any u 6= u′ either u < u′ or u > u′. Now,
consider the map η restricted to the following set.

[S]k = {(s1, . . . , sk) : s1, . . . , sk ∈ S and si ≺ sj for all i < j}

This restriction, denoted as η∗ , η|[S]k , is a homeomorphism (see Definition A.24)
between [S]k and F(k). Thus, a symmetric function f defined on Sk corresponds
to exactly one set function f ∗ with domain F(k),

f ∗({s1, . . . , sk}) = f(s1, . . . , sk)

and vice versa. In addition, the measurable and the continuous functions on
(Sk,B(Sk)) are exactly those measurable and continuous in (F(k),B(F(k))), re-
spectively [Goodman et al. 1997, pp. 131–135].

Since F(k) is homeomorphic to [S]k, it makes sense to construct a measure
to B(F) using a measure in Sk. Let O ∈ B(F), and define set functions µk :
B(F)→ [0,∞] as follows.

µ0(O) , δ∅(O) =

{
1, ∅ ∈ O
0, ∅ /∈ O (5.10)

µk(O) , λ
k
(←−η∗(O ∩ F(k))), k ≥ 1 (5.11)

Proposition 5.8 The set functions µk are measures in (F ,B(F)).

Proof. Clearly, µk are nonnegative, and µk(∅) = 0 for all k ≥ 0. Countable
additivity of µ0 is trivial, so assume k ≥ 1. Let {O(i)}∞i=1 be a sequence of disjoint

and measurable collections, O(i) ∈ B(F). Denote O(i)
k = O(i) ∩ F(k). Then,

µk(
∞⋃
i=1

O(i)) = λ
k
(←−η∗(

∞⋃
i=1

O(i)
k )) = λ

k
(
∞⋃
i=1

←−η∗(O(i)
k ))

=
∞∑
i=1

λ
k
(←−η∗(O(i)

k )) =
∞∑
i=1

µk(O(i))

In addition, since F(k) and Sk are homeomorphic, for every O ∈ B(F), the
preimage ←−η∗(Ok) ∈ B(S), and thus is λ-measurable. �

For practical reasons, it is convenient to work with the original map η rather than
η∗, so the following equality is worth noticing.
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Proposition 5.9 For k ≥ 1, the following holds.

µk(O) =
1

k!
λ
k
(←−η (O ∩ F(k)))

Proof. The equality follows from the fact, that the choice of η∗ is not unique.
One may choose any other η∗i, that is similar restriction than η∗, but with a
different choice of the basis. That is, instead of restricting into [S]k, such that
s1 ≺ s2 ≺ · · · ≺ sk one may choose any permutation πi and restrict to [S]kπi
determined so that sπi1 ≺ sπi2 ≺ · · · ≺ sπik.

Suppose that O ∈ B(F) and denote Ok = O ∩ F(k). Clearly,

←−η (Ok) =
k!⋃
i=1

←−η∗i(Ok)

where η∗i are all unique restrictions into [S]kπi , which follow from different per-
mutations πi. Clearly also ←−η∗i(Ok) ∩ ←−η∗j(Ok) = ∅ for all i 6= j. Then, it follows
that

λ
k
(←−η (Ok)) = λ

k
(
k!⋃
i=1

←−η∗i(Ok)) =
k!∑
i=1

λ
k
(←−η∗i(Ok)) = k! · λk(←−η∗(Ok))

where the last equality is due to invariance of the product hybrid Lebesgue mea-
sure with respect to the order of the basis. �

Remark 5.10 One can choose any other measure on (S,B(S)) than the hybrid
Lebesgue measure λ. For example, suppose that ξ is a measure on (S,B(S)). Then,
one can define measure νk on (F ,B(F)) as follows.

νk(O) = ξk (←−η (O ∩ F(k)))

Remark 5.11 The subcollections of {F(k) = F \F(k) are null sets with respect
to measure µk. Especially, collections of infinite sets are null sets, with respect to
all µk. That is,

µk(F \ F∗) = 0

where F∗ =
⋃∞
k=0F(k) is the collection of all finite sets.

5.3.3 Set Measure and Integral

We introduce a measure to F using the measures µk given in Equation (5.10) and
Equation (5.11) as follows.6

µ(O) =
∞∑

k=0

µk(O) = δ{∅}(O) +
∞∑

k=1

1

k!
λ
k
(←−η (Ok)) (5.12)

6. This measure was given by Valkonen [2002], but without explicit development of µk.
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Proposition 5.12 The set function µ is a measure in B(F).

Proof. Clearly, µ is nonnegative, and µ(∅) = 0. In addition, µ is countably
additive, for suppose {O(i)}∞i=1 is a sequence of disjoint collections. Then

µ(
∞⋃
i=1

O(i)) =
∞∑

k=0

µk(
∞⋃
i=1

O(i)) =
∞∑

k=0

∞∑
i=1

µk(O(i)) =
∞∑
i=1

µ(O(i))

where the last equality follows, since the summation order can be changed in a
positive term series. �

The measure µ defined in Equation (5.12) introduces, of course, an integral
to the real-valued functions defined in F . The integral is identical to the set
integral defined in [Goodman et al. 1997, p. 142].

Definition 5.13 The set integral is defined as an integral with respect to the
measure µ for all O ∈ B(F) as follows.

∫

O
f(Z)δZ ,

∫

O
f(Z)dµ(Z) =

∫

∪∞k=0Ok
f(Z)dµ(Z) =

∞∑

k=0

∫

Ok
f(Z)dµk(Z)

= f({∅})δ{∅}(O) +
∞∑

k=1

1

k!

∫
←−η (Ok)

f({s1, . . . , sk})dλk(s1, . . . , sk)

where the shorthand notation Ok = O ∩ F(k) is used as usual.

Suppose O(C) = {(F{C), for some closed, nonempty C ⊂ S. That is, O(C) is the
collection of closed subsets of C. Then, it is clear that←−η (O(C)∩F(k)) = Ck. In
this case, the set integral can be written in the following form.

∫

O(C)

f(Z)δZ = f({∅}) +
∞∑

k=1

1

k!

∫

Ck
f({s1, . . . , sk})dλk(s1, . . . , sk)

= f({∅}) +
∞∑

k=1

1

k!

∫

C

· · ·
∫

C

f({s1, . . . , sk})dλ(s1) · · · dλ(sk)

where the last form follows from Fubini’s theorem.

Remark 5.14 The set integral over the collection O(C) above is often denoted
briefly as follows ∫

C

f(Z)δZ ,
∫

O(C)

f(Z)δZ

when no confusion should arise. In addition, the set integral over F is denoted,
as ∫

f(Z)δ(Z) ,
∫

F
f(Z)δ(Z) =

∫

S
f(Z)δ(Z)
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Remark 5.15 Since the set integrals are general integrals with respect to a cer-
tain measure, they admit the properties of a general integral, for example the
properties listed in Section A.5.2. Goodman et al. [1997] (p. 141) define such
functions f set integrable, for which each k-element function f({s1, . . . , sk}) is

λ
k
-integrable, and for sufficiently large k, the function is identically zero. It is

true, that functions of this type are µ-integrable, but here, the restriction re-
quiring an upper bound for k is not made. The only restriction is the general
integrability.

5.3.4 Belief Measure

This section aims to provide means to construct RFS distributions. Direct con-
struction of a probability measure PX may be considered impractical for most
purposes. Therefore, other methods are needed. The first is the belief measure,
introduced in Section 5.1.1 in finite universe case.

Definition 5.16 The belief measure of a random finite set X is defined as

βX(C) , P (X ⊂ C) = P (X ∈ O(C))

where O(C) = {(F{C). The belief measure is defined for all λ-measurable C ⊂ S.

One should notice, that the belief measure βX(C) is not a measure, since βX(∅) 6=
0 in general. The belief measure characterises the probability measure P uniquely
according to Choquet Theorem (5.2).7

The next result is important, when one wishes to construct a belief mea-
sure in practice. The theorem is given in a form that is not restricted to bounded
RFS, which is the case in [Goodman et al. 1997, p. 155].

Theorem 5.17 Let X be a RFS, with belief measure βX(C) = P (X ⊂ C). The
belief measure can be written in a factored form as follows.

βX(C) = a0 +
∞∑

k=1

akqk(C
k)

where the constants ak ≥ 0 sum to unity, and qk are probability measures in Sk.
In addition,

ak = P (|X| = k), qk(C
k) = P

(
X ⊂ C

∣∣ |X| = k
)

(5.13)

Conversely, any choice of nonnegative ak that sum to unity, and probability mea-
sures qk in Sk specify a belief measure of a RFS.

Proof. Suppose X is a RFS. Then, |X(ω)| is a random integer, since the collec-
tions F(k) are measurable. One can define ak = P (X ∈ F(k)) = P (|X| = k) for

all k ≥ 0. Obviously,
∑∞

k=1 ak = 1, since
←−
X(∪∞k=1F(k)) = Ω. Then, since O(C)

7. Set T (K) = 1− βX({K) for all compact K.
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and F(k) are measurable, so is their intersection. Therefore, for k ≥ 1, one can
define

qk(C
k) = P (X ∈ O(C) |X ∈ F(k)) =




PX(O(C) ∩ F(k))

ak
, ak > 0

Mk(C
k), ak = 0

where Mk(C) is any probability measure in Sk. Since ak and qk are constructed
as described, Equation (5.13) is satisfied.

Suppose then that ak and qk satisfy the given conditions. Define b(C) =
a0 +

∑∞
k=1 akqk(C

k) and T (K) = 1− b({K). Next, it is proved that T (K) satisfies
the conditions of a Choquet capacity functional (Theorem 5.2).

1. T (∅) = 1− b({∅) = 1− b(S) = 1−∑∞k=0 akqk(Sk) = 1−∑∞k=0 ak = 0.
2. Suppose {Ki}∞i=1 is a decreasing sequence of compact sets, such that
∩iKi = K. Then, Gi = {Ki is an increasing sequence of open sets, such
that ∪iGi = G = {K. Then,

lim
i→∞

T (Ki) = 1− lim
i→∞

b(Gi) = 1− lim
i→∞

[
a0 +

∞∑

k=1

akqk(G
k
i )

]

= 1−
[
a0 +

∞∑

k=1

akqk(G
k)

]
= 1− b(G) = T (K)

3. Suppose K,K1, . . . , Kn ∈ K are arbitrary compact sets, and the open
sets G,G1, . . . , Gn ∈ G are their complements, respectively. Let us show
that Sn(K;K1, . . . , Kn) = b (G \⋃n

i=1Gi), which is nonnegative for all n.
Clearly, the proposition holds for n = 1, since

S1(K;K1) = T (K ∪K1)− T (K) = (1− b(G ∩G1))− (1− b(G))

= b(G)− b(G ∩G1) = b(G \G1) ≥ 0

where the last equality follows from additivity of b. Next, suppose that
Sn−1(K;K1, . . . , Kn−1) = b

(
G \⋃n−1

i=1 Gi

)
. Then,

Sn(K; · · · ) = Sn−1(K;K1, . . . , Kn−1)− Sn−1(K ∪Kn;K1, . . . , Kn−1)

= b

(
G \

n−1⋃
i=1

Gi

)
− b
(
Gn ∩G \

n−1⋃
i=1

Gi

)
= b

(
G \

n⋃
i=1

Gi

)

Since T is a Choquet capacity functional, it specifies a unique probability measure
PX . It is clear, that the belief measure of this probability measure is b. �

Theorem 5.17 states that the belief measure, hence the probability distri-
bution, of a RFS X is completely characterised by a discrete probability distri-
bution of number of elements on N, and probability measures in Sk. This form of
the belief measure is encountered in Chapter 7.
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Example 5.18 Suppose S = Rd. Let a ∈ (0, 1), and q(C) = N(C;m,R). Then,
a belief measure can be constructed as follows.

βX(C) = 1− a+ aq(C)

Obviously, P (|X| = 0) = 1− a, P (|X| = 1) = a, and for k ≥ 2, P (|X| = k) = 0.
That is, this model allows only singletons and the empty set.

If the situation a = 1 is allowed, the random set model above reduces into
a singleton, P (|X| = 1) = 1. A singleton random set can be considered similar to
a random element in S. Obviously, if a = 0, the random set model is degenerate,
P (X = ∅) = 1. ♦

Definition 5.19 Suppose βX(T ) > 0. Then, the conditional belief measure is
defined as

βX(C | T ) , PX(O(C) | O(T )) =
βX(C ∩ T )

βX(T )

5.3.5 Set Density and Set Derivative

The next practical issue is to consider the density function of a random finite
set distribution. The definition is based on the set integral developed above in
Section 5.3.3.

Definition 5.20 Suppose f is a nonnegative integrable finite set function, f :
F∗ → [0,∞], such that ∫

f(Z)δZ = 1

Then, the function f is a set density function.

A set density fX defines uniquely a probability measure to F , as follows.

PX(O) =

∫

O
fX(Z)δZ

The measure PX is absolutely continuous with respect to µ, and fX is the prob-
ability density function of X with respect to µ.

In this section, a construction of the density function from a given belief
measure is considered. The construction is based on the set derivative, that is
defined using the generalised Radon-Nikodym derivative [Goodman et al. 1997,
p. 145].

Definition 5.21 Let Φ : F → Rd be a set function, and s = (v, u) ∈ S. The
generalised Radon-Nikodym derivative (GRND) is defined as a function

δΦ

δs
(T ) = lim

j→∞
lim
i→∞

Φ
[
(T \Bs(1/j)) ∪Bs(1/i)

]− Φ
[
T \Bs(1/j))

]

λ(Bs(1/i))

if the limit exists.
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In the case s /∈ T , and noticing that Bs(1/i) = Bv(1/i) × {u} for all i > 1, the
GRND simplifies to the following form.

δΦ

δs
(T ) = lim

i→∞
Φ
[
T ∪Bs(1/i)

]− Φ
[
T
]

λ(Bv(1/i))

Iterated GRNDs are defined as follows.

δkΦ

δs1 · · · δsk (T ) , δ

δs1

[
δk−1Φ

δs2 · · · δsk

]
(T )

The set derivative is defined using the GRND as follows.

Definition 5.22 Let Φ : F → Rd be a set function, and Z = {s1, . . . , sk} ⊂ S a
finite set. The set derivative is defined as

δΦ

δZ
(T ) , δkΦ

δs1 · · · δsk (T )

δΦ

δ∅ (T ) , Φ(T )

if all the iterated generalised RNDs exist.

It is rather laborious to obtain set derivatives starting directly from Definition
5.22. The next section provides a set calculus “toolbox”, containing results that
make the derivation much more straightforward.

5.3.6 Some Properties of Set Integral and Set Derivative

This section gives a summary of some basic properties of the set derivative and
the set integral. Assume that β(C) is a belief measure, and f(Z) is a set density
function. The set derivative and the set integral are related to each other as
follows [Mahler 2000, p. 30].

β(C) =

∫

C

δβ

δZ
(∅)δZ f(Z) =

δ

δZ

[∫

C

f(Y )δY

]
(C = ∅) (5.14)

Suppose that β, β1, . . . , βn are belief measures, a1, a2 ∈ R are constants, and
g(x1, . . . , xn) : [0, 1]n → R is a function. The set derivative has the following
properties [Mahler 2000, pp. 31–32].

Sum rule
δ

δZ
[a1β1(C) + a2β2(C)] = a1

δβ1

δZ
(C) + a2

δβ2

δZ
(C) (5.15)

Product rules
δ

δz
[β1(C)β2(C)] =

δβ1

δz
(C)β2(C) +

δβ2

δz
(C)β1(C) (5.16)

δ

δZ
[β1(C)β2(C)] =

∑
W⊂Z

[
δβ1

δW
(C)

δβ2

δ(Z \W )
(C)

]
(5.17)
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Constant rule
δ

δZ
a1 = 0, if Z 6= ∅ (5.18)

Chain rules
δ

δz
g(β(C)) =

dg

dx
(β(C))

δβ

δz
(C) (5.19)

δ

δz
g(β1(C), . . . , βn(C)) =

n∑
i=1

[
∂g

∂xi
(β1(C), . . . , βn(C))

δβi
δz

(C)

]
(5.20)

Power rule

δ

δZ
p(C)n =





n!

(n− |Z|)!p(C)n−|Z|
∏
z∈Z

fp(z), |Z| ≤ n

0, |Z| > n

(5.21)

where p is a probability measure of a random vector, and fp its density. In Equa-
tion (5.21), the conventions 00 = 1 and 0! = 1 are used.

The following result is needed in Chapter 7, but it is included here due to
its general nature.

Proposition 5.23 Suppose β1, . . . , βn are belief measures. Then
[
δ

δz

n∏
i=1

βi

]
(C) =

n∑
i=1

[
δβi
δz

(C)
n∏
j=1
j 6=i

βj(C)

]
(5.22)

Proof. The proof proceeds by induction. The case n = 1 is trivial. Then, suppose
Equation (5.22) holds for n = k − 1. Omitting the argument C for convenience,

δ

δz

k∏
i=1

βi =
δ

δz
βk

k−1∏
i=1

βi
(∗)
= βk

δ

δz

k−1∏
i=1

βi +
k−1∏
i=1

βi
δβk
δz

= βk

k−1∑
i=1

[
δβi
δz

k−1∏
j=1
j 6=i

βj

]
+

k−1∏
i=1

βi
δβk
δz

=
k∑
i=1

[
δβi
δz

k∏
j=1
j 6=i

βj

]

where the equality (∗) follows from product rule in Equation (5.16). �

5.3.7 Probability Hypothesis Density

The random set density function, introduced in Section 5.3.5, is defined piecewise
for different number of elements in the set. The density is hard to visualise, even in
the case of a simple low-dimensional space, such as R. On the other hand, if only
one extracted estimate {x1, . . . , xn} ⊂ S of the density is shown, the information
can be considered insufficient, or almost misleading. This is because the estimate
does not contain any information of the uncertainty.

In the author’s opinion, one possible visualisation of the set density could
be the so called Probability Hypothesis Density (PHD). We give first the definition
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of a more general density, the Probability Hypothesis Surface (PHS) [Goodman
et al. 1997, p. 169].

Definition 5.24 The probability hypothesis surface (PHS) function for ran-
dom set X, denoted by DX(Z), is defined by

DX(Z) ,
∫
fX(Z ∪ Y )δY

In the case |Z| = 1, the PHS is referred to as probability hypothesis density,
and denoted as DX(s) , DX({s}).

The PHS can be obtained from the belief measure as follows

DX(Z) =
δβX
δZ

(S)

The probability hypothesis density satisfies

E [|X ∩ A|] =

∫

A

DX(s)dλ(s)

for all measurable A ⊂ S. That is, DX is the RND of the measure E [|X ∩ · |]
with respect to λ.

5.3.8 Finite Set Estimators

Since the space of finite sets does not constitute a vector space, taking expecta-
tions does not make sense. This means, that the most popular Bayes estimator,
the EAP, cannot be used. So, alternative estimators are required. This section
covers two proposed finite set estimators. Recollect that, in general, Bayes esti-
mators are obtained from the posterior distribution. In this section, it is assumed
that there are densities of the posterior distributions. The notations in this sec-
tion are similar to notation in Chapter 3. That is, the unknown and estimated
parameter process is (Xk)k∈N, while the observation process is (Y k)k∈Z+ .

Two Bayes estimators, “GMAP-I” and “GMAP-II”8 were presented in
[Goodman et al. 1997, pp. 191–192]. Mahler [2000] stated new, more descrip-
tive names for the estimators9: The Marginal Multitarget Estimator (MaME)
and the Joint Multitarget Estimator (JoME), respectively. MaME is obtained so
that one first finds n̂, the maximum of the cardinality distribution. Then, one
finds a MAP estimate of the conditional distribution given that the number of
elements is n̂. That is,

n̂ = arg max
n

P (|Xk| = n | Y 1:k = Y1:k)

X̂MaME
k = arg max

|X|=bn fXk|Y1:k
(X)

8. Global MAP of the first and second kind.
9. These names are also rather application-specific.
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JoME differs from MaME in that it does not involve two-step maximisation pro-
cedure. JoME is formed directly by maximising the following quantity.

X̂JoME
k = arg max

X
fXk|Y1:k

(X)
c|X|

|X|
where c is a “small” constant. Mahler [2000] states that both the estimators are
Bayes-optimal (given an appropriate cost function), and that JoME has been
proved to be a consistent estimator [Goodman et al. 1997, pp. 200–205].
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Chapter 6

Target Tracking

In this thesis, “target tracking” is considered as a rather general state estima-
tion problem. This chapter covers the specifics of a multitarget multisensor data
fusion system, but the general problem is common in many other fields. The ap-
proach presented in this chapter is based on the Bayesian target tracking. The
presentation is influenced by the references [Goodman et al. 1997; Stone 2001;
Stone et al. 1999]. More engineering and implementation oriented approaches to
target tracking can be found, e.g., in the books [Bar-Shalom and Fortmann 1988;
Bar-Shalom and Li 1995; Blackman and Popoli 1999; Hall and McMullen 2004].

This chapter starts in a traditional manner, by first considering single
target tracking in Section 6.1. This approach is fruitful in the sense that the
single target tracking problem is rather easy to formulate rigorously, and the
formulation is rather standard in the tracking community. Moreover, the models
and ideas of single target tracking are needed also in the case of multiple targets.
Next, Section 6.2 gives a summary of the most common methods for tracking
multiple known number of targets. At last, the most general problem of tracking
multiple unknown number of targets, is considered in Section 6.3.

6.1 Single Target Tracking

Modern single target tracking systems are usually based on recursive Bayesian
estimation, covered in general in Chapter 3. The state-space model is built so that
the Markov chain (xk)k∈N (the signal process) represents the target state. Most
commonly, the target state consists of the geokinematic part (usually position
and velocity components in R3). Often, the target state is augmented to contain
also some other types of elements, which are referred to as attributes. A common
formulation for the state space is to consider a hybrid space S = Rd × U where
Rd is Euclidean and U a discrete space. The hybrid space is discussed in detail
in Section 5.3.1. The construction of the Markov chain (xk)k∈N can be considered
as dynamic modelling, since it indeed characterises the dynamic behaviour of the
state variable xk. Some common methods of dynamic modelling are discussed in
Section 6.1.1.

63
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The observation process (yk)k∈Z+ consists of the sensor reports. Each ob-
servation yk is assumed to contain a measurement, usually noisy and indirect, of
the target state at the same time xk. Each measurement yk is assumed to have
values in hybrid space Sk. Specifically, it can occur that the measurement space
and the target space are different, Sk 6= S. In addition, it is allowed that different
measurements are defined in different spaces, so in general for k 6= k′ it may occur
that Sk 6= Sk′ . Section 6.1.2 covers some common issues of sensor modelling.

6.1.1 Dynamic Modelling

Often, in tracking applications, the geokinematic dynamics of the target are mod-
elled most naturally as continuous-time processes. This is especially the case, if
the estimation process is to be carried out in irregular sample intervals. In this
case, the target state is considered to be a stochastic process (xt)t∈[0,∞), where
xt : Ω → Rd. The stochastic process is often constructed using a stochastic dif-
ferential equation. For computations, the continuous-time model is discretised.

Perhaps the simplest physically attractive dynamic (kinematic) model,
the constant velocity model, is introduced next. The model is defined in the case
S = R2d, where d is the dimension of the position space. The state xt = (zt,z

′
t)

consists of the position and velocity in Rd, respectively. The constant velocity
model can be given as follows [Bar-Shalom and Fortmann 1988, p. 83–84]1

dxt
dt

=

[
0d Id
0d 0d

]
xt + ρ

[
0d
Id

]
wt (6.1)

where Id and 0d are a d × d identity and zero matrix, respectively. In addition,
wt is a zero-mean “white noise process2” in Rd, and the positive constant ρ is
the process noise deviation. The model is, in fact, an “almost constant velocity
model”, since the velocity components are perturbed by the process noise ρwt.
The process xt has independent increments, so one can create a discrete-time
Markov chain corresponding the continuous-time version given above.

Suppose (tk)k∈N ⊂ [0,∞) is a countable set of increasing times, i.e. tk ≤
tk+1 for all k ∈ N. Consider the sequence of random vectors (xk)

∞
k=1 where

xk = xtk . Then, the discrete-time model corresponding to Equation (6.1) can
be represented as follows.

xk+1 = Akxk + vk (6.2)

where vk is a zero-mean Gaussian distributed random vector with a covariance
matrix Qk. The matrices Ak and Qk can be given as follows.

Ak =

[
Id τkId
0d Id

]
, Qk = ρ2

[
(τ 3
k/3)Id (τ 2

k/2)Id
(τ 2
k/2)Id τkId

]

1. The model was presented in the reference in the case d = 1, but here it is given in vector
case explicitly, assuming that unique coordinate components are independent of each other.
2. Intuitively, wt can be considered to be such a process for which each wt is Gaussian, and for
all t 6= t′ the random variables wt and wt′ are independent and identically distributed. Unfor-
tunately, such process does not exist. The theory of stochastic differential equations is beyond
the scope of this thesis, but an interested reader may read a introduction e.g. in [Øksendahl
1985].



6.1. SINGLE TARGET TRACKING 65

where τk = tk+1−tk is the time interval between xk+1 and xk. In a similar manner,
constant acceleration and coordinated turn models can be formed [Bar-Shalom
and Fortmann 1988; Karlsson 2002].

Quite often, a good model for target kinematics can be created from mul-
tiple simple kinematic models, such as the one given above. The multiple-model
approach assumes, that the target can switch the kinematic model between the
n possible models. The switch is assumed to happen instantaneously. The state
variable xk = (zk, rk) is decomposed into a random vector zk, and an integer-
valued random variable rk. The vector zk corresponds to the geokinematic state,
and is referred to as the base state. The integer rk is the index of the kinematic
model that has been active during the time interval (tk−1, tk], and is referred to
as the modal state [Bar-Shalom and Li 1993, p. 450]. The model can be given as
follows.

P (rk = j | rk−1 = i) = [M]ij

P (zk ∈ B | zk−1 = z, rk = r) = N(B; A
(r)
k z,Q

(r)
k )

(6.3)

where the matrix M is the Markov transition kernel for rk, and the matrices A
(r)
k

and Q
(r)
k are the parameter matrices of the r’th kinematic model. An interested

reader may see the PhD thesis of Herman [2002] for deeper discussion of multiple
model kinematic modelling of an aeroplane.

If the state contains attributes, i.e. variables that cannot be directly asso-
ciated with geokinematics, there are no general approaches to modelling the dy-
namic behaviour, since the attributes can be virtually anything. If the attributes
can be considered independent of the geokinematics, the dynamic behaviour of
the attributes and the geokinematics can be modelled as follows.

P (zk ∈ B,ak ∈ A | zk−1,ak−1) = P (zk ∈ B | zk−1)P (ak ∈ A | ak−1)

where the state xk = (zk,ak) ∈ S consists of the geokinematic part zk, and the
attribute part ak.

6.1.2 Measurement Modelling

While the dynamic state variable xt is usually modelled as a continuous process,
the measurements are assumed to depend on the state variable at one instanta-
neous time. That is, a measurement collected at time tk is conditionally indepen-
dent of all the other state variables given the current state xk. The measurement
model is characterised by the conditional probability P (yk ∈ C | xk) which is
defined for any measurable C ⊂ Sk. In this thesis, it is assumed that this proba-
bility measure is absolutely continuous with respect to the hybrid measure λ in
Sk, so that there is a density function fyk|xk(yk | xk) that satisfies the following
equation.

P (yk ∈ C | xk = xk) =

∫

C

fyk|xk(yk | xk)dλ(yk)
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Often, a measurement model is constructed according to the following additive
noise model.

yk = h(xk) + vk

where vk is a noise term, having a density fv with respect to λ, and h : S → Sk
is a measurable function. Then, the density of yk can be given as follows.

fyk|xk(yk | xk) = fv(yk − h(xk))

Since there are many different types of sensors, no more specific models are listed
here. The sensor models that are used in the experiments are described in Chap-
ter 8.

Many sensors produce also false alarms, i.e. measurements that are due
to uninteresting phenomena, e.g. environment conditions or sensor malfunction.
It is clear, that false alarms must be included in the measurement model. If it is
reasonable to assume, that a certain percentage of the measurements produced
by the sensor are false alarms, one can create a simple measurement model as
follows.

f ′yk|xk(yk | xk) = (1− pf )fyk|xk(yk | xk) + pfff (yk)

where pf ∈ [0, 1] is the probability corresponding the percentage of false alarms,
and ff (yk) is the probability density function of the false measurements. Typically,
ff (yk) is quite uninformative, e.g. a uniform distribution.

In some applications, it is reasonable to assume that one can obtain infor-
mation from a failed measurement attempt [Mori et al. 1986; Stone et al. 1999].
This is the case, if it is reasonable to model the probability of detection. A rea-
sonable model can be constructed by allowing yk to take the value 	 denoting a
“failed measurement”. That is, the measurement space is augmented with the new
element, S′k = Sk ∪ {	}. The measurement model density is altered as follows.

f ′y|x(yk | xk) =

{
1− pd(xk), yk = 	
pd(xk)fyk|xk(yk | xk), yk 6= 	

(6.4)

where fyk|xk is a density in Sk. The measurable function pd(x) : S→ [0, 1] deter-
mines the probability of detection of a target in location x ∈ S. This framework
is described in detail and exemplified in [Stone et al. 1999, pp. 46–49].

6.1.3 Filtering

Given the above described kinematic model and measurement model, tracking is
just estimation of the unknown state variable xk. Of course, what is still missing,
is the prior distribution π0|0. The prior distribution is, most often, the parameter
that is more or less heuristically given. In that case, the prior distribution is best
to be as uninformative as possible.

Once all the models are fixed, the Bayesian estimation needs to be ad-
dressed. Chapter 3 contained the basic methods how one can perform this infer-
ence in practice. If one is lucky, the state and measurement spaces are Euclidean,
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z1z0 z2

y1 y2

Figure 6.1: A switching Kalman filter model as a dynamic Bayesian network.

the prior density is Gaussian, and the conditional densities are linear Gaussian,
as given in Equation (3.9). In this case, the Kalman filter can be used to ob-
tain the exact posterior distribution pk|k, from which any Bayes estimate can be
computed. Most often, the EAP estimator is used, which is the posterior mean
mk|k.

Obviously, it happens quite rarely in real life, that all the assumptions of
the Kalman filter are satisfied. Most importantly, it often occurs that the linear-
ity or the Gaussianity assumptions fail. The EKF algorithm can be considered
perhaps the “standard” tracking algorithm, which has been applied to a variety
of tracking problems. As mentioned in Section 3.3.2, the recently proposed UKF
algorithm serves as an alternative for EKF.

If the multiple model approach is used in kinematic modelling, and the
measurement model is linear-Gaussian, the model is referred to as a switching
Kalman filter model3 (SKFM). For convenience, the SKFM model is summarised
below.

P (rk = j | rk−1 = i) = [M]ij

P (zk ∈ B | zk−1 = z, rk = r) = N(B; A
(r)
k z,Q

(r)
k )

P (y
k
∈ C | zk = z) = N(C; Hkz,Rk)

(6.5)

Figure 6.1 shows SKFM as a dynamic Bayesian network. In principle, inference
in a SKFM can be performed in an exact manner. This is due to the fact that
if r1 = r1, . . . are given, the model reduces to a KFM. In practice, the compu-
tational complexity of an exact inference algorithm will grow exponentially, due

3. Also referred to as a switching SSM, a switching linear dynamical system (LDS), a jump-
Markov model, a jump-linear system, a conditional dynamic linear model (DLM), etc. [Murphy
2002, p. 41].
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to an increasing number of Gaussian mixture components4 [Murphy 2002, Sec-
tion B.5.2]. Therefore, approximate recursive inference methods must be used in
practice.

There are a couple of straightforward approximate inference algorithms
that may be used for approximate recursive inference of a SKFM. The idea of the
algorithms is to keep the number of mixture components constant. The generalised
second order pseudo-Bayesian algorithm (GPB2) algorithm is based on the idea,
that given a mixture distribution of q Gaussians on round k − 1, the algorithm
performs q2 KF updates to obtain the exact posterior with q2 Gaussians. Then,
the q2 Gaussians are“collapsed5”into q Gaussians. The interacting multiple model
(IMM) algorithm [Blom and Bar-Shalom 1988], which seems to be more popular
in tracking applications, is very similar to GPB2. The IMM algorithm reduces
the number of Gaussians to q after the prediction, but before performing the
KF update, so that only q KF updates are needed [Murphy 2002, Section 4.3].
The IMM algorithm is found to perform almost as well as GPB2, but with less
computational load [cf. Bar-Shalom and Li 1993, pp. 482–483].

As the reader may guess, the above mentioned approximate inference al-
gorithms may be applied also in other cases, if the state variable can be factored
into Euclidean and discrete parts, and if the conditional densities are condition-
ally linear-Gaussian, as given in Equation (6.5). Furthermore, if the dependencies
are again “not exactly, but close to linear-Gaussian”, the first-order linearisation
may be applied as well, to obtain, for example, an “EKF-IMM” algorithm. The
PhD thesis of Fearnhead [1998] contains more discussion on EKF, IMM and GPB,
as well as some other approaches.

There are two classes of methods that remain applicable for cases in which
the densities are strongly multimodal and/or non-Gaussian: the sample based
Monte Carlo methods, and the grid methods based on a (deterministic) discreti-
sation. The discretisation methods, in general, are rather tricky to implement
in a real-life application. This is due to the often high-dimensional state space.
Therefore, one must use some kind of dynamic discretisation method, that con-
centrates the grid points to the high-probability regions of the state space. The
book of Stone et al. [1999] and the PhD thesis of Bergman [1999] consider this,
certainly not trivial, approach.

Recently, there has been a “Monte Carlo gold rush” in nonlinear and non-
Gaussian tracking. The first tracking application of sequential Monte Carlo (SMC)
seems to be the bearings-only tracking in [Gordon et al. 1993]. Ever since, SMC
have been applied at least to positioning and navigation [Bergman 1999; Gustafs-
son et al. 2002; Karlsson et al. 2003], bearings-only tracking [Carpenter et al. 1999;
Gilks and Berzuini 2001], visual tracking [Blake and Isard 1997], passive radar

4. Starting from a Gaussian prior, the number of mixture components in the posterior at time
instant k is qk, where q is the number of kinematic models, i.e. the number of values rk can
take.
5. In fact, the mixture of Gaussians distribution is replaced with a Gaussian distribution with
the mean and the covariance of the mixture distribution. This procedure is sometimes referred
to as a “weak marginalisation” in the Bayesian network literature [Murphy 2002, Section B.5.2].
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tracking [Herman 2002], and ground moving target indicator (GMTI) tracking
[Mallick et al. 2002]. Most of the publications are applications of the bootstrap
filter, that was introduced by Gordon et al. [1993] (possibly with minor modifica-
tions). The SMC approach has been compared with the performance of the EKF
on some nonlinear tracking problems, and SMC has been found to overcome EKF.
Of course, the computational requirements of the SMC methods are usually much
higher than the requirements of EKF, so comparison may be considered somehow
“unfair”. The specifics of these Monte Carlo tracking algorithms are not covered
here. An interested reader is advised to take a look of the recent book devoted to
SMC in single-target tracking [Ristic et al. 2004].

6.2 Tracking of Multiple Known Number of Targets

Tracking multiple known number of targets does not differ conceptually from
single-target tracking. Suppose there are n targets to track. It suffices to concate-
nate the state variables of the targets together, and obtain a joint state variable
xk = (x

(1)
k , . . . ,x

(n)
k ), where x

(i)
k is the state variable of the i’th target. That is,

the n-target state space is the Cartesian product space of n single-target state
spaces.

In practice, the multitarget tracking problem is, of course, trickier than
the problem of single-target tracking. The only multitarget case, in which ex-
act inference is tractable, is the HMM, i.e. the case when the state space S is
finite6. That is, excluding the HMM case, every multitarget tracking problem
is intractable. The problem has been studied for decades, and practical methods
have been developed to obtain good suboptimal solutions. Below, in Sections 6.2.1
and 6.2.2 some common methods for building a multitarget model are discussed.
In Section 6.2.3, a summary of computational solutions for multitarget tracking
are given.

6.2.1 Dynamic Modelling

Usually, the construction of a multitarget dynamic model is carried out so that one
assumes the target dynamics independent of each other. That is, the multitarget
state evolution model is defined as follows.

P (xk ∈ B | xk−1) = P (x
(1)
k ∈ B(1), . . . ,x

(n)
k ∈ B(n) | x(1)

k−1, . . . ,x
(n)
k−1)

=
n∏
i=1

P (x
(i)
k ∈ B(i) | x(i)

k−1)
(6.6)

where B = ×ni=1B
(i). Figure 6.2 shows the independent motion multitarget model

as a Bayesian network. In the figure, the prior state variable x0 is assumed to
have independent components as well, P (x0 ∈ B) =

∏n
i=1 P (x

(i)
0 ∈ B(i)).

6. And even in this case, the number of elements in S can only be moderate.
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Figure 6.2: The special case of a multitarget tracking model, when the motion
models of the targets are assumed independent of each other.

Mahler [2001b] (p. 14-5) suggests that the assumption of independent mo-
tions is unrealistic. The assumption is, of course, not necessary from a theoretical
perspective. In practice, however, it may be quite hard to construct a multitarget
state evolution model, in which the inter-target dependence is modelled in a suf-
ficient accuracy. In addition, the independence assumption admits simplifications
in computations.

6.2.2 Measurement Modelling

Consider first that there are single measurements, that arrive sequentially. Often,
it is reasonable to assume that a single measurement depends on at most one
target. In that case, one may include a so called association7 variable ck, which
tells which target (if any) originated the measurement. That is, one assumes that
the measurement model can be given as follows.

P (yk ∈ C | xk, ck = i) =

{
P (yk ∈ C | x(i)

k ), i > 1

Pf (yk ∈ C), i = 0
(6.7)

where Pf is the distribution of false measurements. The association variable
“switches” the dependency of the measurement of targets, as exemplified in Fig-
ure 6.3. Of course, the value of the association is generally unknown. The associ-

7. Also referred to as contact.
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Figure 6.3: The special case of a multitarget tracking model, when the motion
models are assumed independent of each other, and the measurement
model is the one given in Equation (6.7).

ation variable c1:k can be considered to be an unimportant8 nuisance parameter.
The association indicator can, in general, depend on the past associations. In
the most simple form, depicted also in Figure 6.3, the association variable ck is
assumed independent of the past given the current measurement,

P (ck = c | y1:k = y1:k, c1:k−1 = c1:k−1) = P (ck = c | y1:k = y1:k)

i.e. ck is assumed to have only the prior distribution P (ck).
Often, a set of measurements is assumed to arrive at once, or almost at the

same time. Such a set of measurements is referred to as data, scan, frame, or return
set. The association of these measurements into targets is often characterised by
an assignment function ι : {1, . . . ,m} → {0, . . . , n}, which assigns each of the m
measurements to one of the n targets, or to false alarm.

P (yk ∈ A | xk, ck = ι) =
m∏
j=1

P (y
(j)
k ∈ A(j) | x(ι(j))

k )

where A = ×mj=1A
(j), and the notation P (y

(j)
k ∈ A(j) | x(0)

k ) = Pf (y
(j)
k ∈ A(j))

is used for convenience. That is, the measurements are independent given the

8. It is assumed, that one is interested only in the state variable x1:k
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value of the association function ι, and the multitarget state xk. The associa-
tion function ι is often constrained in some manner, e.g. such that at most one
measurement is allowed to be assigned to one target.

A more general assumption is to consider the case in which the set of mea-
surements is allowed to have a random number of elements [Goodman et al. 1997;
Mori et al. 1986]. Although this type of model could be sensible to consider in the
case of known number of targets, the description of the random set approach is
postponed to Chapter 7. In addition, the constraint that a measurement depends
on at most one target can be relaxed. This is the case, when an “association” in
the sense of Equation (6.7) is not meaningful9. Such a case is not considered here,
but an interested reader may find information on that, e.g., in [Stone et al. 1999,
Chapter 5].

6.2.3 Filtering

As mentioned above, excluding the case of a finite state-space, the multitarget
tracking problem is intractable. This means, that suboptimal methods must be
introduced to implement practical systems. The field of multiple target tracking
has been under rather intense research for decades. The basic methods for multiple
target tracking has been developed in the 70’s [Bar-Shalom 1978]. Consequently,
to date, a range of algorithms have been proposed for the purpose.

Often, a multiple target tracking algorithm is based on the assumptions
of independent target motions and a unique measurement-to-target association,
which were covered in Sections 6.2.1 and 6.2.2. If, in addition, the single-target
dynamic models and measurement models are assumed linear-Gaussian10, i.e.

P (x
(i)
k ∈ B | xk−1 = xk−1) = N(B; Akx

(i)
k−1,Qk)

P (y
k
∈ C | xk = xk, ck = i) = N(C; Hkx

(i)
k ,Rk)

(6.8)

then the problem is rather similar to the case of SKFM discussed in Section 6.1.3.
In principle, one can compute the exact posterior distribution, but the computa-
tional complexity increases exponentially with respect to k (the number of Bayes
recursions). The framework of computing the posterior distribution by means of
exploring all the association possibilities, is referred here to as multiple hypothesis
tracking (MHT). The MHT framework has been formulated theoretically in the
70’s by Reid [1979], and has been reformulated again, e.g., by Stone et al. [1999].

Since the theoretical MHT framework cannot be used in practice, subop-
timal MHT algorithms have been proposed. The core for many modern MHT al-
gorithms, e.g. Blackman [2004], is the original algorithm proposed of Reid [1979].
Stone et al. [1999] suggest an extension of MHT, “unified tracking”, allowing
merged measurements11. The association problem has been formulated also as an
optimisation problem, in which the most likely12 association is found for the last s

9. For example, the measured signal is a superposition of two or more signals.
10. Or almost linear-Gaussian, in which case EKF can be employed.
11. Merged measurements are such measurements that depend on more than one target.
12. In general, any other cost function can be used as well.
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processed measurements. That is, one tries to find the most likely value for ck−s:k
for some fixed s [e.g. Deb et al. 1997; Pattipati et al. 1992].

The joint probabilistic data association (JPDA) framework provides a
somewhat different philosophy for the data association problem [Bar-Shalom and
Fortmann 1988; Fortmann et al. 1983]. In JPDA, no explicit “data-association
hypotheses”are formed, but the posterior distribution is computed approximately.
The core idea of the JPDA approach is similar to the idea behind the IMM
algorithm. In JPDA, it is assumed, that all the single target posterior distributions
in the recursion k − 1 are Gaussian. In the recursion k, one performs the KF
update for each possible association, and then replaces the obtained mixture of
Gaussians distribution with a single Gaussian. That is, the posterior distribution
of each target is always approximated by a Gaussian distribution. Somewhat
similar approach to JPDA is the “event averaged maximum likelihood estimator”
(EAMLE) that was proposed by Kastella [1995]. The EAMLE differs from JPDA
in that inter-target correlation is modelled. In addition Kastella [1995] proposes
an approximative approach, based on mean-field theory, that provides reduced
computational complexity.

Of course, sequential Monte Carlo approach has been proposed for the
multiple target tracking problem. Indeed, the multiple-target problem is quite
natural to be solved with SMC, since it is inherently non-linear and non-Gaussian
inference problem. In addition, if the target dynamic model, or the measurement
model are very nonlinear or non-Gaussian, the traditional KF based methods
cannot be used. Avitzour [1995] proposed the basic bootstrap filter to be used
in multitarget tracking. Gordon [1997] considers a hybrid bootstrap filter for
multiple target tracking, in which the resampling step is replaced by a step that
fits a finite mixture distribution13 to the posterior samples, and draws samples
from the mixture density. Hue et al. [2000, 2002] consider data-association as a
missing data problem, and use Gibbs sampling in order to obtain samples of the
unknown association variable. Karlsson and Gustafsson [2001] and Schulz et al.
[2001] propose a Monte Carlo JPDA approach, which combines the bootstrap filter
and the JPDA association method. Särkkä et al. [2004] propose Rao-Blackwellised
Monte Carlo data association (RBMCDA), which works in the restricted case
of conditionally linear-Gaussian model given in Equation (6.8). The RBMCDA
method can be characterised as a “stochastic MHT” implementation, since it
forms and maintains hypotheses like MHT, but performs hypothesis creation and
pruning in a stochastic manner.

6.3 Tracking Unknown Number of Targets

Often, in real-life applications, there are unknown number of targets to be tracked.
In addition, the number of targets can change from time instant to another.
In such a case, the assumption of known number of targets, that was made in

13. In the article, mixture of Gaussians were used.
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Section 6.2, turns out to be invalid. Consequently, the framework presented in
Section 6.2 turns out to be insufficient. Basically, there are two approaches that
can be used to enable unknown and random change in the number of targets.
The first is to develop directly an algorithm that somehow allows the number to
change. The second is to formulate the estimation problem differently, so that
the number of targets is a dynamic and unknown random variable. After a rig-
orous probabilistic formulation, an algorithm that computes the (approximate)
posterior distribution of the multitarget state can be developed.

Typically, the “algorithmic” approach is based on some kind of a heuristic
that makes decisions on the number of targets. The multitarget tracking system
developed in Section 6.2 can then be used conditioned on the number of targets
determined by the heuristic. The task of finding new targets is referred to as a
track initiation problem. Of course, in addition to initiation of tracks, there is
certainly a need for a heuristic that decides when a target disappears from the
surveillance region. Such a heuristic is substantially easier to implement, since all
that is required is the decision that certain target disappears.

Hu et al. [1997] analyse some approaches for track initiation. The methods
that have been developed for initiation purposes have been rather application-
dependent. For example, the approaches based on the (modified) Hough transform
require that the state space is a subset of R2, and that the measurements are
points in the plane [Hu et al. 1997]. Similarly, the rule-based and the logic-based
approaches are developed specifically for a certain type of sensor and target model.
For example, Yeddanapudi et al. [1995] introduce a track initiation method for
ballistic missiles. Lately, an initiation approach based on minimum description
length (MDL) has been proposed [Chen et al. 2003]. Unfortunately, even that
approach needs to be tailored to a specific problem14. As a conclusion, one can
state that the initiation methods that have been developed are not too general.
The problem-specific approaches may well be suitable for the application for which
they were developed, but they cannot be considered suitable for a heterogeneous
multi-sensor systems, with a variety of sensor types.

Alternative approaches, that are based on a development of a rigorous
theory for changing number of targets, have been developed by several authors.
True multitarget estimation with unknown number of targets is joint estimation
of target count, individual target states, and measurement-to-target association15.
The random set approach, which is the method selected in this thesis, is covered
in Chapter 7. Mahler [2003a] gives a rather extensive summary of the alternative
approaches to the multitarget problem, and references to the approaches. A short
summary and references to selected frameworks is given next.

The MHT approach of Reid [1979] includes also the case of changing

14. The application that is considered in the article is “detection and initiation of tracks of
incoming tactical ballistic missiles in the exo-atmospheric phase using a surface-based electron-
ically scanned array (ESA) radar”.
15. The association is often considered as a nuisance parameter, and the objective is to estimate
the multitarget state, i.e. target count and states.
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number of targets. However, the article does not provide a probabilistic model
that would account also for the change in the number of targets. The article
of Mori et al. [1986] presents a model that closely resembles the random set
approach, but instead of random set formalism, the problem is specified in a
disjoint union space X =

⋃∞
n=0 Sn×{n}, where n denotes the number of targets.

Mori et al. [1986] suggest the inference to be carried out in the spirit of Reid’s
MHT approach.

The integrated probabilistic data association (IPDA) approach considers
the case of zero or one targets [Mušicki et al. 1994]. The target appearance and
disappearance are included to the model by means of a two-state Markov chain.
The idea of the IPDA approach is similar to the one proposed in [Stone et al.
1999, p. 181] and in [Valkonen 2002, Chapter 5]. There, the target appearance
and disappearance is achieved by an additional element, say “:”, in the state
space. The state : of a target means that the target is not present. Recently, an
extension of IPDA, the joint IPDA (JIPDA) approach has been proposed [Mušicki
and Evans 2002]. JIPDA considers the case of multiple targets, with the same
basic idea. In both IPDA and JIPDA, the posterior distribution of each target is
approximated by a Gaussian distribution, like in PDA and JPDA, respectively.
Challa et al. [2002] have found that the IPDA algorithm can be derived from the
random set formalism.
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Chapter 7

Random Set Tracking

In this thesis, construction of a model for tracking unknown number of targets
is carried out in the random set framework, whose theoretical background was
covered in Chapter 5. The multiple target tracking problem can be modelled in a
very flexible and natural fashion with random sets. The unknown estimated mul-
titarget state Xk is a random set that consists of unknown and varying number
of targets. Similarly, for many types of sensors, the number of measurements that
are obtained at one time instant1 is varying, and can be considered random. The
model that is derived in this chapter assumes numerous independencies, and a
rather specific sensor model.

Since this chapter contains some specific derivations, it is suggested that
a reader with no prior knowledge of finite random sets in target tracking looks
through some introduction. There are many sources, where one can find tutorial
material. Perhaps the most thorough survey is given in the book of Goodman
et al. [1997]. More engineering-oriented introductions can be found, e.g., in the
following references [Mahler 2000, 2001a,b, 2004].

This chapter is ordered as follows. First, a simple dynamic model is devel-
oped in Section 7.1. Section 7.2 covers development of measurement models for
three different types of sensors. Section 7.3 discusses of practical filtering prob-
lems that arise, and previously proposed computational strategies tackling the
problems. Section 7.3.3 proposes a SMC implementation for the model that was
developed in Sections 7.1 and 7.2. Finally, the visualisation of the multitarget
posterior distribution is considered in Section 7.4.

7.1 Dynamic Model

Conceptually, the dynamic model for unknown and varying number of targets
is constructed by defining the conditional probabilities P (Xk | Xk−1), i.e. the
Markov transition kernels for (Xk)k∈N. These conditional probabilities contain a
number of submodels. The submodels need not be independent, but the submodels
are listed separately below as a reminder of what is needed to construct a sensible
multitarget dynamic model.

1. Or during one period of time

77
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1. A single-target dynamic model, which is discussed in Section 6.1.1.
2. A birth model, which characterises how new targets can appear in the

surveillance region.
3. A death model, which characterises how the existing targets can disappear

from the surveillance region.
In practice, the target motions are usually assumed independent, as given in
Equation (6.6). Consider, in addition, that new target appearance and old target
disappearance are independent both with respect to each other and with respect
to target movements2. Then one can obtain the model that is introduced in this
section.

Since the births are assumed independent, a dynamic model can be con-
structed in parts, as follows.

Xk = Sk ∪Bk (7.1)

where Bk is the set of the appeared new targets, and Sk is the set of the targets
survived from the previous round k − 1. The dynamic models of sets Sk and Bk

are considered next in Sections 7.1.1 and 7.1.2, respectively. The density of the
dynamic model fXk|Xk−1

is given in Section 7.1.3.

7.1.1 Individual Movements and Deaths

This section is devoted to construction of the dynamic model P (Sk |Xk−1) of the
survived targets. As mentioned in Section 5.3.4, this can be achieved by defining
a belief measure βSk(C | Xk−1) = P (Sk ⊂ C | Xk−1 = Xk−1). Suppose that

there are n targets on the set Xk−1 = {x(1)
k−1, . . . , x

(n)
k−1}. Then the set of survived

targets can be represented as follows.

Sk =
n⋃
i=1

X
(i)
k where X

(i)
k = {x(i)

k } ∩D(i)
k (7.2)

where the old-target sets X
(i)
k are either empty sets, or singletons. The random

sets D
(i)
k characterise target disappearance, and can be given as follows3.

D
(i)
k =

{
S, with probability ps(x

(i)
k−1)

∅, with probability 1− ps(x(i)
k−1)

(7.3)

where ps : S → [0, 1] characterises the probability of target survival in a given
position of the state space.

2. Mahler [2000] suggests a spawn model, that accounts for targets spawning from the existing
targets. This means, that the birth model includes a dependency on the previous state. Spawning
is not considered in this thesis. However, such dependencies can be included in the tracking
model without a theoretical difficulty.
3. D

(i)
k is a random closed set, but not finite! Since {x(i)

k } are finite, X(i)
k is finite, though.
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Since D
(i)
k and {x(i)

k } were assumed independent, the conditional belief

measure of X
(i)
k can be given in the form of Example 5.18.

βX(i)
k

(C | Xk−1) = P ({x(i)
k } ∩D(i)

k ⊂ C | x(i)
k−1 = xk−1)

= P (D
(i)
k = ∅ | x(i)

k−1 = xk−1) + P (D
(i)
k = S, {x(i)

k } ⊂ C | x(i)
k−1 = xk−1)

= [1− ps(xk−1)] + ps(xk−1)P (x
(i)
k ∈ C | x(i)

k−1 = xk−1)

where 1−ps(xk−1) is the probability that a target in position xk−1 will disappear,

and P (x
(i)
k ∈ C | x(i)

k−1 = xk−1) is a single-target dynamic model, discussed in
Section 6.1.1. If it is reasonable to assume, that target disappearance does not
depend on the position xk−1, then ps is constant.

It is rather trivial4 to obtain the belief density corresponding to the belief
measure βX(i)

k
(C | Xk−1).

fX(i)
k

(Z) =





1− ps(x(i)
k−1), Z = ∅

ps(x
(i)
k−1)fxk|xk−1

(z | x(i)
k−1), Z = {z}

0, |Z| > 1

(7.4)

where fxk|xk−1
is the density of the single-target dynamic model P (x

(i)
k | x(i)

k−1).
Then, one can ask how to obtain the belief density corresponding βSk . It is obvi-

ous, that βSk =
∏n

i=1 βX(i)
k

, since X
(i)
k were assumed independent, and thus one

obtains

βSk(C | X) = P

(
n⋃
i=1

X
(i)
k ⊂ C

∣∣∣∣∣ Xk−1 = X

)
=

n∏
i=1

P (X
(i)
k ⊂ C |Xk−1 = X)

n∏
i=1

P (X
(i)
k ⊂ C | x(i)

k−1 = x(i)) =
n∏
i=1

βX(i)
k

(C | x(i))

The following proposition provides means for obtaining the belief density of a
product of belief measures.

Proposition 7.1 Let β1, . . . , βn be belief functions of “singleton-or-empty” ran-
dom sets. That is, δβi/δZ = 0, whenever |Z| > 1. Then, the following holds.

δ

δ{z1, . . . , zm}
n∏
i=1

βi =





1

(n−m)!

∑
π

[
m∏
i=1

δβπi
δzi

n∏
i=m+1

βπi

]
, m ≤ n

0, m > n

where π goes over every permutation of the integers 1, . . . , n.

4. Most importantly, the power rule in Equation (5.21) is needed.
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Proof. Let us first convince ourselves of the case m > n. First, observe that if
n = 1, then the condition holds by assumption. Next, suppose that the condition
holds for n− 1. Then, by the product rule in Equation (5.17),

δ

δZ

n∏
i=1

βi =
∑
W⊂Z

[ |W |≤1︷︸︸︷
δβn
δW

δ

δ(Z \W )

n−1∏
i=1

βi

]

= βn

|Z|≤n−1︷ ︸︸ ︷
δ

δZ

n−1∏
i=1

βi +
∑
z∈Z

[
δβn
δz

|Z|≤n︷ ︸︸ ︷
δ

δ(Z \ {z})
n−1∏
i=1

βi

]

where the conditions above the terms indicate when the term may be nonzero.
Suppose next that m ≤ n. The case m = 0 is trivial. Assume that the

proposition holds for m− 1. Then, one obtains

δ

δ{z1, . . . , zm}
n∏
i=1

βi =
δ

δzm

[
δ

δ{z1, . . . , zm−1}
n∏
i=1

βi

]

=
1

(n−m+ 1)!

∑
π

[
(∗)︷ ︸︸ ︷

δ

δzm

(
m−1∏
i=1

δβπi
δzi

n∏
i=m

βπi

)]

Now, observe that (∗) decomposes as follows according to the product rule in
Equation (5.17), and Proposition 5.23, respectively.

δ

δzm

[
m−1∏
i=1

δβπi
δzi

n∏
i=m

βπi

]
=

n∏
i=m

βπi
δ

δzm

m−1∏
i=1

δβπi
δzi

+
m−1∏
i=1

δβπi
δzi

δ

δzm

n∏
i=m

βπi

=
n∏

i=m

βπi

m−1∑
i=1

[ =0︷ ︸︸ ︷
δβπi
δziδzm

m−1∏
j=1
j 6=i

βπj

]
+

(∗∗)︷ ︸︸ ︷
m−1∏
i=1

δβπi
δzi

n∑
i=m

[
δβπi
δzm

n∏
j=m
j 6=i

βπj

]

Applying (∗∗) back into (∗), one gets

δ

δ{z1, . . . , zm}
n∏
i=1

βi =
1

(n−m+ 1)!

(†)︷ ︸︸ ︷
∑
π

[
m−1∏
i=1

δβπi
δzi

n∑
i=m

(
δβπi
δzm

n∏
j=m
j 6=i

βπj

)]
(7.5)
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where the sum over permutations (†) can be written in parts, so that one gets

∑
π

[
m−1∏
i=1

δβπi
δzi

n∑
i=m

(
δβπi
δzm

n∏
j=m
j 6=i

βπj

)]
=
∑
π∗

∑
π∗

[
m−1∏
i=1

δβπ∗i
δzi

n∑
i=m

(
δβπ∗i
δzm

n∏
j=m
j 6=i

βπ∗j

)]

=
∑
π∗

[
m−1∏
i=1

δβπ∗i
δzi

n∑
i=m

(‡)︷ ︸︸ ︷
∑
π∗

(
δβπ∗i
δzm

n∏
j=m
j 6=i

βπj

)]
(7.6)

where the permutations π are split into two parts, as follows

πi =

{
π∗i, 1 ≤ i < m

π∗i, m ≤ i ≤ n

Consequently, the sum over permutations π is split into the two sums over π∗ and
π∗. The map π∗ goes through all one-to-one maps π∗ : {1, . . . ,m−1} → {1, . . . , n}.
For each π∗, the map π∗ goes through all one-to-one maps π∗ : {m, . . . , n} →
{1, . . . , n} \ rng(π∗).

Since the sum in (‡) covers all one-to-one maps of numbers m, . . . , n to
{1, . . . , n} \ rng(π∗), it is independent of i, as long as m ≤ i ≤ n. Thus, one can
write

n∑
i=m

∑
π∗

(
δβπ∗i
δzm

n∏
j=m
j 6=i

βπj

)
= (n−m+ 1)

∑
π∗

(
δβπ∗m
δzm

n∏
j=m+1

βπj

)
(7.7)

Combining Equations (7.5)–(7.7), one gets

δ

δ{z1, . . . , zm}
n∏
i=1

βi =
1

(n−m)!

∑
π

[
m∏
i=1

δβπi
δzi

n∏
i=m+1

βπi

]
(7.8)

which is the proposed form. �

According to Proposition 7.1, the belief density of Sk conditioned onXk−1

can now be given as follows.

fSk|Xk
(Z | X) =





1

(|X| − |Z|)!
∑
π

[ |Z|∏
i=1

(
ps(xπi)fxk|xk−1

(zi | xπi)
)

|X|∏

i=|Z|+1

(
1− ps(xπi)

)]
, |Z| ≤ |X|

0, |Z| > |X|
(7.9)

where π goes over every permutation of integers 1, . . . , |X|.
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7.1.2 Poisson Birth

The set of new targets that have appeared can have, in general, any distribution.
A rather uninformative model can be constructed so that one assumes that targets
appear independently in different regions of the state space. That is, given that
k targets are born, the elements b

(i)
k of the set Bk are independent. This kind of

model can be constructed according to Theorem 5.17 as follows

βBk(C | Xk−1) = βBk(C) =
∞∑
j=0

bjPb(C)j (7.10)

where Pb(C) = P (b
(i)
k ∈ C) is a probability measure for single target appearance.

The terms bj = P (|Bk| = j) denote the probability distribution that j targets are
born. In this thesis, it is assumed that the birth events form a Poisson process.
That is, bj follow the Poisson distribution,

bj =
(ητk)

j

j!
e−ητk , j ∈ N (7.11)

where τk = tk − tk−1 is the time difference between Xk and Xk−1, and η is the
birth intensity parameter, that describes the expectation of the number of born
targets per time unit.

The density of the belief measure given in Equation (7.10) can be written
as follows, according to the power rule in Equation (5.21).

δβBk
δZ

(∅) =
∞∑
j=0

bj
δ

δZ
Pb(∅)j =

∞∑
j=m

bj
j!

(j −m)!
Pb(∅)j−m

m∏
i=1

fb(zi)

where Z = {z1, . . . , zm}. But Pb(∅) = 0, and thus Pb(∅)j−m = 0, whenever m 6= j,
so

fBk(Z) =
δβBk
δZ

(∅) = |Z|! · b|Z|
∏
z∈Z

fb(z) (7.12)

where fb is the density of the single-target birth measure Pb, product over empty
set is defined one, and 0! = 1.

7.1.3 Individual Movements, Births, Deaths, and Poisson Birth

Due to the independence of individual motion models, disappearance, and ap-
pearance of new targets, one can write the conditional belief as follows.

βXk
(C | Xk−1) = P (Sk ∪Bk ⊂ C |Xk−1 = Xk−1)

= P (Bk ⊂ C)P (Sk ⊂ C |Xk−1 = Xk−1)) = βBk(C)βSk(C | Xk−1)
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So, the belief density fXk|Xk−1
(Z | Xk−1) can be obtained according to the prod-

uct rule in Equation (5.17) from the belief densities of Bk and Sk as follows.

fXk|Xk−1
(Z | X) =

∑
W⊂Z

[
fSk|Xk−1

(W | X)fBk(Z \W )

]

=
∑
W⊂Z
|W |≤|X|

[
|Z \W |! · b|Z\W |

(|X| − |W |)!
∏

u∈Z\W
fb(u)

∑
π

( |W |∏
i=1

(
ps(xπi)fxk|xk−1

(wi | xπi)
) n∏

i=|W |+1

(
1− ps(xπi)

))]
(7.13)

where π goes over every permutation of integers 1, . . . , |X|.

7.2 Measurement Model

In the case of unknown number of targets, the measurement model has quite
an important role. In addition to giving information on the position of a target,
the measurements give information of the number of targets in the surveillance
region. Conceptually, the construction of the multitarget measurement model
reduces to definition of the conditional probability P (Y k | Xk). In contrast to
Goodman et al. [1997], the whole sensor suite is not reconceptualised as one
“meta-sensor” in this thesis. Instead, it is assumed that the sensors operate rather
independently, and their measurements are processed separately. In addition, the
reports from different sensors are allowed to arrive irregularly, even without any
prior knowledge of sensors’ reporting frequencies.

This section covers specifications of three different measurement models.
The categorisation of sensors is near to the categorisation into “type 1” and “type
2” sensors due to Reid [1979]. The first sensor type, covered in Section 7.2.1, is a
sensor that produces a varying number of measurements in each report. A practi-
cal example of this type of sensor can be considered to be a microwave radar, that
reports the detections obtained during one scan that covers the surveillance re-
gion. This sensor type admits meaningful concepts of a “measurement attempt”,
and a “probability of detection”. The second type of sensor, discussed in Sec-
tion 7.2.2, is one that produces reports with exactly one detection. Section 7.2.3
presents the third type of sensor, that produces at most one detection in a report.
Such a sensor is considered to be a kind of “mixture” of the first and second types
of sensors.

7.2.1 Varying Number of Measurements

Let us first consider a measurement model that allows the number of measure-
ments to change. If the target measurements, the missed measurements, and the
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false alarms are considered independent, the model reduces analogous to the ran-
dom set dynamic model given in Equation (7.1). That is, the measurement set
Y k can be characterised by the model

Y k = T k ∪ F k (7.14)

where T k =
⋃n
i=1 Y

(i)
k are the measurements obtained from the n targets, and F k

are the false measurements. If it is assumed, that there is at most one measurement
of each target, the random sets Y

(i)
k are either singleton or empty, similar to X

(i)
k

given in Equation (7.2),

T k =
n⋃
i=1

Y
(i)
k where Y

(i)
k = {y(i)

k } ∩M (i)
k (7.15)

where M
(i)
k are random sets that characterise the target measurability similar to

Equation (7.3),

M
(i)
k =

{
S, with probability pd(x

(i)
k−1)

∅, with probability 1− pd(x(i)
k−1)

where pd : S → [0, 1] determines the probability of detection in each position of

the state space. If the detection and the measurement processes (M
(i)
k and y

(i)
k ,

respectively) are assumed independent, the belief function can be given as follows.

βY (i)
k

(C | Xk) =
[
1− pd(x(i)

k )
]

+ pd(x
(i)
k )P (y

(i)
k ∈ C | x(i)

k = x
(i)
k )

where pd(x) is the probability of detection of a target in state space point x ∈ S.
The probability of detection model includes, e.g., the sensor field-of-view (FOV),
and obviously pd(x) = 0 for such state-space points x where it is impossible for
the sensor to obtain measurements of the target.

A Poisson model has been used as a model for false alarms in the literature,
e.g. in derivation of the PDA algorithm [Bar-Shalom and Fortmann 1988, p. 168].
In the case of a Poisson false alarm model, derivation of the measurement model
is similar to derivation of the dynamic model in Section 7.1. The resulting density
fY k|Xk

(Y | X) is similar to the dynamic model given in Equation (7.13),

fY k|Xk
(Y | X) =

∑
W⊂Y

[
fT k|Xk

(W | X)fF k(Y \W )

]

=
∑
W⊂Y
|W |≤|X|

[
|Y \W |! · d|Y \W |

(|X| − |W |)!
∏

u∈Y \W
ff (u)

∑
π

( |W |∏
i=1

(
pd(xπi)fyk|xk(wi | xπi)

) n∏

i=|W |+1

(
1− pd(xπi)

))]
(7.16)
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Xk

Yk

ck

Xk

ck

Yk fk

(a) (b)

Figure 7.1: A Bayesian network representation of a random set tracking model
with an explicit association indicator. (a) The model in the single-target
case. (b) The model in the case of zero or one measurements, with constant
false alarm rate.

where π goes over all the permutations of the integers 1, . . . , |X|, pd is the prob-
ability of detection, fyk|xk(y | x) is the single-target measurement model density,
and ff is the false alarm density. The constants dj correspond to the Poisson
density of the false alarms, which can be given as follows

dj =
(γτk)

j

j!
e−γτk , j ∈ N

where γ is the false alarm intensity, i.e. the expected number of false alarms per
time unit, and τk is the time difference from the previous report of the current
sensor.

7.2.2 Exactly One Measurement

In the case of a sensor that produces exactly one measurement per report, the
cardinality of the set Y k must be considered fixed. That is, it is assumed that
the measurement is a singleton Y k = {yk}. This means, that the cardinality
distribution is assumed to be

P
(|Y k| = n

∣∣Xk = X
)

= P (|Y k| = n) =

{
1, n = 1

0, n 6= 1

It is assumed, that the measurement can either be false alarm, or originate
equally likely from any of the targets. This kind of model can be formulated us-
ing an association indicator introduced in Section 6.2.2. The measurement model
can be presented more intuitively as a Bayesian network such as given in Fig-
ure 7.1 (a). The distribution of the association indicator ck depends only on the
cardinality of Xk,

P (ck = i |Xk) = P
(
ck = i

∣∣ |Xk|
)
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The model can be given either by defining a fixed false alarm percentage in the
presence of targets,

P
(
ck = i

∣∣ |Xk| = n
)

=





pf , i = 0

n−1(1− pf ), 1 ≤ i ≤ n

0, i > n

(7.17)

or by defining just a uniform distribution from 0 to n,

P
(
ck = i

∣∣ |Xk| = n
)

=

{
(n+ 1)−1 0 ≤ i ≤ n

0, i > n
(7.18)

Now, suppose that the elements in X are enumerated arbitrarily, X =
{x(1), . . . , x(n)}. The measurement model can be given as follows similar to the
model given in Equation (6.7).

P ({yk} ⊂ C |Xk = X, ck = i) =

{
P (yk ∈ C | x(i)), i > 0

Pf (C), i = 0

where Pf is the probability measure of the false alarms. Since the association
variable ck is unknown, and considered unimportant, we need to obtain the mea-
surement model without ck.

β{yk}(C |Xk = X) =
∞∑
i=0

P (yk ∈ C, ck = i |Xk = X)

=
∞∑
i=0

[
P (yk ∈ C |Xk = X, ck = i)P (ck = i |Xk = X)

]

= P
(
ck = 0

∣∣ |Xk| = n
)
Pf (C) +

n∑
i=1

[
P (yk ∈ C | x(i))P

(
c = i

∣∣ |Xk| = n
) ]

Derivation of the corresponding belief densities is rather straightforward, due
to the linearity of the set derivative. The density corresponding to the uniform
association distribution in Equation (7.18) can be given as follows

fyk|Xk
(y | X) =

1

|X|+ 1

[
ff (y) +

∑
x∈X

fyk|xk(y | x)

]

where ff is the density corresponding Pf , the false alarm distribution. In the
case of a constant false alarm rate, i.e. when the association variable has the
distribution given in Equation (7.17), the density can be given as follows

fyk|Xk
(y | X) =

{
pf · ff (y) +

1−pf
|X|

∑
x∈X fyk|xk(y | x), X 6= ∅

ff (y), X = ∅
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7.2.3 Zero or One Measurement

Suppose that there is a sensor, which includes either one measurement, or no mea-
surements in each report. This section introduces a model for this type of sensor.
The sensor model includes independent false alarms, that occur with probability
pf . In addition, the targets are assumed to be measured equiprobably. However,
when a target is measured, it may occur that the sensor is not able to produce a
measurement, thus there is also a model for probability of detection. This mea-
surement model can be factored into a Bayesian network shown in Figure 7.1
(b). The binary random variable fk can take values 0 (no false alarm) or 1 (false
alarm). The distribution of fk can be given as follows.

P (fk = f) =

{
1− pf , f = 0

pf , f = 1
(7.19)

The association variable ck is integer-valued, and has a distribution that depends
only on the current number of targets, i.e. the cardinality of Xk.

P
(
ck = i

∣∣ |Xk| = n
)

=

{
1/n, 1 ≤ i ≤ n

0, otherwise
(7.20)

where it is assumed that n ≥ 1. As we shortly see, the distribution of ck is
unimportant5, if n = 0. The measurement Y k is assumed to depend on Xk, ck,
and fk, so that

βY k
(C |Xk, ck = i,fk = 1) = Pf (C)

βY k
(C |Xk = ∅, ck = i,fk = 0) = 1 (7.21)

βY k
(C |Xk = X, ck = i,fk = 0) = 1− pd(x(i)) + pd(x

(i))P (y ∈ C | x(i))

Now, the measurement model P (Y k |Xk) can be derived, since one can write

βY k
(C | X) =

1∑

f=0

∞∑
i=1

P (Y k ⊂ C, ck = i,fk = f |Xk = X)

=
1∑

f=0

∞∑
i=1

[
βY k

(C |Xk = X, ck = i,fk = f)P (ck = i,fk = f |Xk = X)
]

=
1∑

f=0

∞∑
i=1

[
βY k

(C |Xk = X, ck = i,fk = f)P (ck = i |Xk)P (fk = f)
]

(7.22)

Substituting Equations (7.19)–(7.21) into Equation (7.22), one obtains the fol-
lowing belief measure βY k

(C | X) = P (Y k ⊂ C |Xk = X).

βY k
(C | ∅) = (1− pf ) + pfPf (C)

βY k
(C | X) =

1− pf
|X|

[∑
x∈X

(
1− pd(x)

)
+
∑
x∈X

(
pd(x)P (yk ∈ C | x)

)]
+ pfPf (C)

5. One can assume, for example, that P (ck = 1 | |Xk| = 0) = 1.
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False alarm?
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Any targets?
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Figure 7.2: The data generation procedure for the model of zero or one measure-
ments. The shaded ellipses denote the “inputs”, while the dotted boxes
contain the different possible outputs.

where X 6= ∅. The density corresponding to the belief measure above can be given
as follows

fY k|Xk
(∅ | ∅) = 1− pf

fY k|Xk
({y} | ∅) = pfff (y)

fY k|Xk
(∅ | X) =

1− pf
|X|

∑
x∈X

[
1− pd(x)

]

fY k|Xk
({y} | X) =

1− pf
|X|

∑
x∈X

[
pd(x)fyk|xk(y | x)

]
+ pfff (y),

(7.23)

where X denotes a nonempty set.
The derivation of the density in Equation (7.23) was technical. The model

can be considered more intuitively through a data generation procedure, which is
outlined in Figure 7.2. The generation of a datum starts from the random variable
fk, which determines whether there is a false alarm. If there is a false alarm,
the measurement is distributed according to the false alarm distribution Pf . If
the measurement is not a false alarm, i.e fk = 0, then the procedure continues
with a query of any targets. If there are no targets, the measurement is empty.
Otherwise, the i’th target is picked according to ck = i. The following query
determines whether the sensor’s attempt to obtain a measurement of the i’th
target is a success. If the measurement attempt fails, the measurement is again
empty. Otherwise, the measurement is generated according to the single-target
measurement model P (yk ∈ C | xk = x(i)).

7.3 Filtering

Before starting this section, one may recall, that tracking multiple known number
of targets was in general an intractable estimation problem. Since the case of a
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known number of targets is a special case of the random set tracking framework,
it is expected that no closed form solutions can be found. On the contrary, since
there are more unknown variables that need to be estimated, one can assume,
that there will be severe problems in practical implementation of a random set
tracking system.

Goodman et al. [1997] presented the theoretical foundations of the Bayes-
ian random set tracking. However, such algorithms that can be considered com-
putationally practical have appeared only recently. This is probably due to the
very nonlinear nature of the multitarget tracking problem. The traditional ap-
proximative methods, such as linearisation, tend not to suffice. Conceptually,
the multitarget tracking problem reduces into recursive Bayesian estimation, dis-
cussed in Chapter 3. More specifically, the core problem is to find a tractable
approximation of the Bayes recursion, which can be given in the case of random
finite set densities as follows

pk|k−1(Xk) =

∫
fXk|Xk−1

(Xk | Xk−1)pk−1|k−1(Xk−1)δXk−1 (7.24)

pk|k(Xk) =
fY k|Xk

(Yk | Xk)pk|k−1(Xk)∫
fY k|Xk

(Yk | X ′k)pk|k−1(X ′k)δX
′
k

(7.25)

where the notation pa|b(X) , fXa|Y 1:b
(X | Y1:b) from Chapter 3 is used, and the

integral in Equation (7.24) is the set integral, introduced in Section 5.3.3. It is
easy to believe, that a closed form solution to Equations (7.24) and (7.25) cannot
be obtained in general. Even the pointwise evaluation of fXk|Xk−1

and fXk|Xk−1

can be computationally heavy, for large cardinality Yk or Xk. This depends, of
course, on the specific choice of the dynamic model and the measurement model.

There are some approaches that have been proposed to bring the recursion
into a computationally feasible form. The first approach that is discussed in Sec-
tion 7.3.1 is the approach based on the probability hypothesis density (PHD). The
PHD approach does not provide an explicit algorithm for computing the Bayes
recursion, but transfers the problem into a different form. The assumptions that
are needed for the PHD approach to be applicable are not satisfied by the sensor
models discussed in Sections 7.2.2 and 7.2.3. So, other methods that have been
proposed for random set estimation are reviewed in Section 7.3.2. Finally, Sec-
tion 7.3.3 presents the sequential Monte Carlo algorithm that was developed in
this thesis.

7.3.1 The PHD Approach

The concept of PHD was introduced in Section 5.3.7, but merely as a statistic or
visualisation that can be obtained from the multitarget density. PHD can be con-
sidered also as the“first moment”of the multitarget distribution [Mahler 2003a,b].
Mahler has proposed, that PHD can be used directly in the estimation [see, e.g.
Mahler 2003a]. The PHD estimation algorithms are based on the idea that one
computes the PHD of the posterior density from the PHD of the previous poste-
rior. Let us denote the PHDs so that Da|b(x) ,

∫
pa|b({x} ∪W | Y1:k)δW . Then,
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the PHD filter can be characterised so that one seeks an algorithm that performs
the Bayes update of the PHDs [Mahler 2003a].

· · · −−−→ pk−1|k−1
Eq. (7.24)−−−−−→ pk|k−1

Eq. (7.25)−−−−−→ pk|k −−−→ · · ·y
y

y
· · · −−−→ Dk−1|k−1

PHD-predict−−−−−−−→ Dk|k−1
PHD-update−−−−−−−→ Dk|k −−−→ · · ·

That is, one needs to develop the “PHD-predict” and the “PHD-update” steps to
the above diagram, so that the multitarget densities pa|b need not be considered
explicitly.

Mahler [2003a] has derived the approximate update equations for the
PHD, given that the following assumptions are satisfied [Mahler 2003a, pp. 1166–
1168]6.

1. The motions of the targets are independent, with a transition kernel den-
sity fxk|xk−1

.
2. The probability of each target’s survival is independent of the other tar-

gets, and is characterised by the function ps : S→ [0, 1].
3. Appearance of new targets is independent of the states of the existent

targets. New target appearance has the density fBk(X). The PHD of this
density is denoted as D′k(x) ,

∫
fBk({x} ∪W )δW .

4. The target measurements produced by the sensor are characterised by the
density fyk|xk(y | x).

5. The probability of each target’s detection is independent, and charac-
terised by the function pd : S→ [0, 1].

6. The false alarms are Poisson, with an average number γτk of independent
false alarms with a spatial distribution ff (y).

The assumptions 1–3 are fulfilled by the dynamic model that was presented in
Section 7.1, and the assumptions 4–6 are fulfilled by the measurement model in
Section 7.2.1. The sensor models introduced in Sections 7.2.2 and 7.2.3 do not
satisfy these assumptions.

In the case that the above listed assumptions are valid, the PHD predictor
equation can be written as follows [Mahler 2003a, p. 1167].

Dk|k−1(x) = D′k(x) +

∫
ps(w)fxk|xk−1

(x | w)Dk−1|k−1(w)dw (7.26)

However, the PHD measurement update equation needs to be approximated. The
update equation requires that the predicted density is approximately Poisson7.
That is, for all finite X ⊂ S, one can write

pk|k−1(X) ≈ e−µµ|X|
∏
x∈X

s(x) (7.27)

6. Mahler [2003a] allows also spawning, which is not included here.
7. “Poisson” means here a Poisson process in a more general sense than what was given in
Definition 2.36. The general definition of a Poisson process is related to the theory of point
processes, from which one can find information, e.g., in [Karr 1991].
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for some µ ≥ 0 and probability density s(x). Then, the PHD of the predicted
density can be written as Dk|k−1(x) = µ ·s(x). Assuming that the prior is approx-
imately Poisson, then one can write an approximate PHD measurement update
as follows [Mahler 2003a, p. 1168].

Dk|k(x) ≈ Fk(Yk | x)Dk|k−1(x) (7.28)

where the “PHD-likelihood” term Fk can be written as follows

Fk(Yk | x) =
∑
y∈Yk

pd(x)fyk|xk(y | x)

ηkc(y) +
∫
Dk|k−1pd(x)fyk|xk(y | x)Dk|k−1(x)dx

+ 1− pd(x)

These update formulae turn out much less complicated than the direct infer-
ence according to Equations (7.24) and (7.25). The combinatorial explosion of
Equations (7.13) and (7.16) is reduced drastically. But what is the cost of this
approach? Since this approximation propagates only one density Dk|k instead
of the full multitarget distribution, information is evidently lost. However, since
PHD can be considered sufficient for many purposes, the most important question
is that how drastic the approximation given in Equation (7.27) is? This question
can be stated to be under rather intense research, but here is what the developer
has written [Mahler 2003a, p. 1155].

. . . But if both sensor covariances and sensor false alarm densities are
small then observations will be tightly clustered around target states,
confusion due to false alarms will be small, and so the time-evolving
multitarget posteriors will be roughly characterized by their first-order
moments.

In other words, the PHD approximation inherently assumes that the sensor has a
rather high probability of detection, and the measurement errors are quite small.
In addition, the number of false alarms should be moderate.

There is intense research going on with the practical implementation of the
PHD approximation. Vo et al. [2003a,b] and Sidenbladh [2003] suggest sequential
Monte Carlo implementation of Equations (7.26) and (7.28). Sidenbladh [2003]
compared the performance of the PHD filter with respect to direct implementation
of the random set Bayes recursions. They concluded that the performance of the
PHD filter falls quickly with respect to the sensor signal-to-noise ratio (SNR). Vo
et al. [2003a,b] reported simulations in a two-dimensional state space8, in which
the algorithm was able to detect tracks quite reliably from a cluttered background.

7.3.2 Other Proposed Methods

Mahler has proposed a para-Gaussian approximation of the multitarget estima-
tion [Mahler 2000, pp. 50–52]. The approach is, however, considered too restrictive
in the scope of this thesis. The article of Morelande and Challa [2003] outlined
a random set tracking algorithm, but only on a conceptual level. The article did
not provide a concrete algorithm, but postponed the development into the future.

8. The state space consisted of position and velocity components.
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Since the multitarget distributions tend to be nonlinear and non-Gaussian,
it is natural to consider a sequential Monte Carlo implementation. Sidenbladh and
Wirkander [2003, 2004] have suggested a SMC implementation of the random set
Bayes recursion. Their sensor model and the dynamic model of Sidenbladh and
Wirkander [2004] are similar9 to the models in Sections 7.1 and 7.2.1. The track-
ing model of Sidenbladh and Wirkander [2004] includes a flavour that may be
considered contradictory: the birth model allows a dependency on the measure-
ments10. The SMC algorithm Sidenbladh and Wirkander [2004] propose is based
on the idea that one keeps a fixed amount of particles at each cardinality level.
Consequently, this approach requires an upper bound for the number of targets. In
addition, the computational complexity of the algorithm increases drastically with
respect to this upper bound. Since the computational complexity of the algorithm
is high, Sidenbladh and Wirkander [2004] propose some methods for bringing the
complexity down. Most importantly, Sidenbladh and Wirkander [2004] suggest
the PHD approach discussed in Section 7.3.1.

7.3.3 Implemented Sequential Monte Carlo Filter

This section outlines an SMC implementation of the random set tracking, that is
based on the general SISR algorithm given in Algorithm 4.3. The implementation
covers the random set tracking model that was introduced in Sections 7.1 and 7.2.
The algorithm is best suited for sensors, that admit at most one measurement per
report, such as the sensors that were discussed in Sections 7.2.2 and 7.2.3. In the
case of varying number of measurements, i.e. the model given in Section 7.2.1, this
algorithm has an exponentially increasing computational complexity with respect
to the number of measurements and targets.

The implementation is somewhat different to what Sidenbladh and Wir-
kander [2003, 2004] suggested. The implementation admits a computational com-
plexity that increases approximately linearly with respect to the expected number
of targets in the scene. No prior limit for the number of targets is required, unlike
in the implementation of Sidenbladh and Wirkander [2004]. Vo et al. [2003a,b]
proposed this kind of an algorithm in a conceptual level, but did not present any
tests. They suggested that the algorithm with the prior importance distribution
could not be practical.

The implementation that is proposed in this section is, in fact, exactly the
bootstrap filter, with adaptive resampling, given in a general form in Algorithm
4.3. The algorithm is theoretically not too complicated, but includes all sorts

9. In their model, the birth and false alarms events were not modelled as Poisson processes.
There was a fixed amount of target objects, which were “alive” (in the surveillance region),
or “dead” (outside the surveillance region). The objects were allowed to enter from one state
to another with a certain probability. Similarly, there was a fixed amount of “clutter” objects,
which each became measured with a certain probability.
10. They justify their choice with the notion that this model allows more efficient exploration of
the state space, i.e. more efficient allocation of the random samples. Usually, in SMC algorithms,
this is achieved by a proper choice of the importance distribution, as mentioned in Section 4.3,
while the actual model is left untouched.
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Z
(i)
0 ∼ PX0

w
(i)
0 ← 1/n

for k = 1, 2, . . . do
Z

(i)
k ∼ fXk|Xk−1

(· | Z(i)
k−1)

ŵ
(i)
k ← fY k|Xk

(Yk | Z(i)
k )

w
(i)
k ←

ŵ
(i)
k∑n

i=1 ŵ
(i)
k

E [h(X0:k) | Y 1:k = Y1:k] ≈
n∑
i=1

w
(i)
k h(Z

(i)
0:k)

if neff({w(i)
k }ni=1}) < nth then

(Z
(i)
k ,w

(i)
k )ni=1 ← resample

[
(Z

(i)
k ,w

(i)
k )ni=1

]

end if
end for

Algorithm 7.1: SISR implementation of random set estimation framework.

of implementation issues, regarding the choice of the components. The proposed
algorithm is outlined in Algorithm 7.1. The symbols in the algorithm are in ac-
cordance with the symbols in Sections 7.1 and 7.2. Notice that the expectation
that is estimated has to be real or vector valued, i.e. the function h : F∗ → Rd
maps finite sets into vectors.

The line of Algorithm 7.1 that states “Z
(i)
k ∼ fXk|Xk−1

(· | Z(i)
k−1)” calls

for some comments. The generation of random samples Z
(i)
k given the previous

state Z
(i)
k−1 is summarised in Algorithm 7.2. The generation of Z

(i)
k follows directly

the presentation in Section 7.1. At first, the number of born targets m is drawn
from the discrete Poisson distribution given in Equation (7.11). Then, the state
of each of the born targets is drawn independently according to the birth density
fb. For each target in Z

(i)
k−1, it is determined whether the target will survive. For

the surviving targets, samples are drawn from the single-target motion model
fxk|xk−1

.

7.4 Visualisation and Output

The multitarget posterior distribution πk|k(O) , P (Xk ∈ O | Y 1:k = Y1:k)
contains all information that is relevant in view of estimation. An important
question is that how one can extract a reasonable estimate or estimates from the
posterior distribution πk|k when approximated with particles,

πk|k(O) ≈ P k|k(O) ,
N∑
i=1

w
(i)
k δZ(i)

k
(O) (7.29)
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m ∼ Poisson(ητk)
Bk ← {b1, . . . , bmk

}, where bi ∼ fb(·)
Sk ← ∅
for all z ∈ Zk−1 do
u← U(0, 1)
if u < ps(z) then
Sk ← Sk ∪ {z′}, where z′ ∼ fxk|xk−1

(· | z)
end if

end for
Zk ← Sk ∪Bk

Algorithm 7.2: Algorithm that draws an sample Zk from the predictive density
fXk|Xk−1

(· | Zk−1) given in Equation (7.13).

wherew
(i)
k and Z

(i)
k are the weights and the samples, respectively, that correspond

to the symbols in Algorithm 7.1. The JoME and MaME estimates considered in
Section 5.3.8 cannot be extracted from this representation straightforwardly, since
both JoME and MaME are “MAP-like” estimates, which require maximisation of
the posterior density11.

A reasonable estimator for the whole multitarget state is difficult to con-
struct from the particle representation. Simple estimators can, however, be ob-
tained for the number of targets. The first estimator is the expected a posteriori
(EAP) number of targets, given as follows

n̂EAP
k|k = E

[|Xk|
∣∣ Y 1:k = Y1:k

]
=
∞∑
n=0

[
n · πk|k(F(n))

]

where F(n) = {X ⊂ S : |X| = n}, i.e. the collection of all subsets of S with
cardinality n. This estimate is also referred to as the mean estimated number of
targets. The second estimator for target count can be obtained by maximising
the posterior cardinality distribution,

n̂MAP
k|k = arg max

n∈N πk|k(F(n))

This is the maximum a posteriori (MAP) estimate of number of targets. These
estimates are quite easy to obtain from the particle representation of Equa-

11. However, if one considers the hit-or-miss Bayes cost function given in Equation (2.13) with
some macroscopic ∆, such estimate can be found that minimises the cost. The MAP estimate
was given in the first place as a limit when ∆ is decreased, and thus the MAP estimate cannot be
considered a “proper” Bayes estimate. This estimate obtained from the particle representation
cannot be considered very practical. The estimate has evidently quite large variance, if ∆ is
very small. On the other hand, if ∆ is large, the estimate is coarse.
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tion (7.29), since

πk|k(F(n)) =
N∑
i=1

w
(i)
k δZ(i)

k
(F(n)) =

∑

i∈I(n)

w
(i)
k

where I(n) = {i : |Z(i)
k | = n}, i.e. the set that contains the indices of the particles

of cardinality n. Now, the EAP and MAP number of targets estimates can be
extracted as follows

n̂EAP
k|k =

∞∑
n=0

[
n
∑

i∈I(n)

w
(i)
k

]
(7.30)

n̂MAP
k|k = arg max

n∈N

∑

i∈I(n)

w
(i)
k (7.31)

The infinite sum in Equation (7.30) reduces naturally to a finite sum, since
each particle contains a finite number of elements. Similarly, maximum has to
be searched only from a finite set of possibilities in Equation (7.31). The EAP
and MAP estimators for number of targets differ also in the sense that n̂MAP

k|k is

integer-valued, but n̂EAP
k|k is real-valued.

Since the position distribution of the targets is even more important than
the cardinality distribution, it is clear that the position distribution has to be
illustrated in some manner—preferably in a manner that is easy to interpret by
a human. In the case of single-target tracking, a rather straightforward and intu-
itive visualisation of the single-target position distribution would be to consider
a two-dimensional histogram corresponding the (x, y) coordinates. This type of
histogram could be illustrated as an intensity image. In the multiple target case,
similar information can be shown in the form of PHD. Recall that PHD is the
density of the target count measure,

E
[|Xk ∩ C|

∣∣ Y 1:k = Y1:k

]
=

∫

C

Dk|k(x)dx

where Dk|k is the posterior PHD. The PHD estimator that is considered in this
thesis is defined so that the surveillance region is discretised into finite resolution
cells. Then, for each finite resolution cell, the expected number of targets in the
resolution cell is determined. This can be achieved as follows. Suppose A is a set
corresponding to a resolution cell. Then, one determines

n̂EAP
k|k (A) = E [|Xk ∩ A| | Y 1:k = Y1:k] =

∫
|Z ∩ A|dπk|k(Z)

From this definition, one obtains for the particle representation

n̂EAP
k|k (A) =

N∑
i=1

w
(i)
k |Z(i)

k ∩ A| (7.32)
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The interpretation of the obtained PHD approximation is quite straightforward:
the value n̂EAP

k|k (A) of each resolution cell A corresponds to the (approximate)
expectation of the number of targets within that cell.

While the PHD with an estimate of target count might be a sufficient
representation of the posterior distribution for many purposes, there might still
be situations where extraction of a unique estimate is desirable. Sidenbladh and
Wirkander [2004] suggested fitting a mixture of Gaussians into the PHD to find
peaks. The parameters of the Gaussians would then represent estimates of the
target state distributions. It should be pointed out, however, that this method
can be best thought as an indirect, heuristic estimator. The mixture-Gaussian
representation of the PHD is an approximation, and information is lost when the
PHD is extracted from the true multitarget distribution.



Chapter 8

Experimental Setup

This chapter covers the limited experimental setup, that is intended to give an idea
how the algorithm described in Section 7.3.3 works in practice. The test scenarios
consist of a varying number of targets in a surveillance region. There are sensors
that measure the angle from the sensor towards the target based on some signal
emitted by the target. This bearings-only tracking is a rather standard tracking
scenario, that has been used in testing of several single-target and multitarget
tracking algorithms [e.g. Carpenter et al. 1999; Gilks and Berzuini 2001; Gordon
et al. 1993; Hue et al. 2002; Särkkä et al. 2004].

The experiments in this thesis are based on artificial tracks, and the data
is generated according to the ideal measurement model, that is used also by
the tracker. Since there are bearings-only measurements, which are corrupted by
false alarms and missed measurements, the scenario can be considered difficult.
The performance of the random set tracking algorithm was not compared with
an existing tracking algorithm. This was due to the fact that no such alternative
approaches were found in the literature that could be used in this kind of scenario.

Section 8.1 describes the details of the models that were used in the tests.
In addition, the general parameters of the tracking scenarios are outlined. The
specifics of the parameters of each test setup are given in Section 8.2, where the
results are also analysed.

8.1 Data and System Parameters

The algorithm that was tested was the SMC implementation of the random set
tracking framework described in Section 7.3.3. The algorithm was written in Mat-
lab1 version 6.5. The tests were run on a PC having 2 GHz Intel Pentium 4 CPU
and 512 MB of main memory. The number of Monte Carlo samples (particles)
was fixed throughout the tests to 20000. The resample threshold nth was set to
one fourth of the total number of particles, 5000.

The state space S in the test scenarios was four-dimensional consisting
of the x and y-coordinates, and the x and y velocities, denoted as x′ and y′,

1. See http://www.mathworks.com/products/matlab/.

97
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ID Start time End time Speed

1 5 220 416.0
2 35 270 891.1
3 70 210 339.7
4 50 280 272.7

Figure 8.1: The sensors (∗) and the tracks (lines) in the scenarios. The tracks
start from a square, and end into a cross. The table gives a summary of
the temporal properties of the tracks.

respectively. The state space was bounded, so that for each v = [x, y, x′, y′]T ∈ S,
the following conditions were satisfied.2

� −50 km ≤ x, y ≤ 50 km

� −1000 m/s ≤ x′, y′ ≤ 1000 m/s

Figure 8.1 shows the positions of the three angular sensors, and the four constant
speed tracks involved in the scenarios. All of the three sensors were used in all
the tests, but the number of tracks that were selected varied. In the single-target
scenario, only target 1 was selected. Correspondingly, the two-target scenario
included targets 1 and 2, and the three-target scenario included, in addition,
target 3.

If not otherwise mentioned, the measurement data was generated accord-
ing to the measurement model involved in the corresponding test. In particular, all
the tests used the zero or one measurement model described in Section 7.2.3. All
the scenarios had a time span from 1 to 300 seconds. The measurements arrived
sequentially at each second. The measurement generation process was such that
at each second, the sensor that produced the measurement was picked randomly.
Then, a measurement was generated according to the sensor model, as illustrated
in Figure 7.2. Section 8.1.2 describes the default parameters of the measurement
model, while the test-specific parameters are given in Section 8.2. The parameters
of the dynamic model were fixed throughout the tests to the values described in
Section 8.1.1.

2. Since it is convenient, for the sake of intuition, to introduce some units of measurement, we
use the standard physical units of position and time. One should keep in mind, however, that
the tests are purely synthetic. That is, one should not consider the tests mimicking some real
world phenomena.
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8.1.1 Dynamic Model

The dynamic model that was used in all the experiments is the model introduced
in Section 7.1. The single-target dynamic model was the constant velocity model,
given in Equation (6.2). The process noise standard deviation ρ was fixed to the
value3 35 m/s3/2. The value was set empirically.

The initial distribution was constrained to be “no targets”, i.e. P (X0 =
∅) = 1. In all the scenarios, the true situation started with no targets in the
surveillance region. However, this can be considered a reasonable initial distribu-
tion for any multitarget surveillance system, if there is no better prior information
of the situation available. The track birth process was modelled as Poisson, as dis-
cussed in Section 7.1.2. The track birth rate4 η was fixed to value 0.1 through all
simulations. The distribution of the born targets Pb was uniform over the whole
surveillance region. For practical reasons, the Poisson distribution was truncated
so that the maximum number of born targets during one processing step was one.

The probability of track survival was 0.95 at maximum. To prevent the
targets getting out of the surveillance region, soft boundaries were created so that
the probability of track survival decreased linearly, if any of x, y is nearer than 10
km to the surveillance region border, or if any of x′, y′ is nearer than 50 m/s to the
allowed velocity limits. When representing the target state as v = [x, y, x′, y′]T ,
the probability of track survival can be given as follows

ps(v) =





min
i

(0.95,
v(i)−m(i)

b(i)
,
M(i)− v(i)

b(i)
), v ∈ S

0, v /∈ S
where m = −[50000, 50000, 1000, 1000]T , M = [50000, 50000, 1000, 1000]T , and
b = [10000, 10000, 50, 50]T . The case v /∈ S, i.e. the vector is out of the surveillance
region, is included due to the fact that the constant velocity single-target dynamic
model allows the target to drift outside the surveillance region5. The probability
of survival is exemplified in Figure 8.2 as a function of the (x, y)-position, with
zero velocities.

8.1.2 Measurement Model

The measurement model that was used throughout the tests was the one described
in Section 7.2.3. That is, the sensor included at most one measurement in each
report. The sensors produced bearings-only measurements. This means, that the
sensors returned only the direction of arrival (DOA) of the signal they measured.
In the scenarios, the angular measurement model assumed additive noise. This
noisy DOA measurement model can be given as follows.

yk = atan2(ŷ, x̂) + vk mod 2π (8.1)

3. The unit of the process noise variance ρ2 may be more intuitive: (m/s)2/s.
4. That is, the expected number of born targets per second.
5. Strictly speaking, we should consider the state space as S = R4. It is more convenient,
though, to speak of the effective restriction of R4 as the state space.
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Figure 8.2: The probability of survival of a track as a function of the (x, y) posi-
tion.

where vk is a Gaussian distributed random variable, x̂ = x−sx and ŷ = y−sy are
the target x and y coordinates with respect to the sensor position s = [sx, sy]

T ,
and the function atan2 is the four quadrant inverse tangent, defined as follows.

atan2(y, x) =





arctan(y/x), x > 0

sgn(y) · π/2, x = 0

arctan(y/x) + π, x < 0

where sgn(y) =

{
1, y ≥ 0

−1, y < 0

That is, each measurement yk ∈ [0, 2π) is the true target angle perturbed by an
additive Gaussian noise term6,

P (yk ∈ A | xk = [x, y, x′, y′]T ) = N(A′; 0, σ2
a)

where σa is the standard deviation of the angular measurements, having value
(2/180)π. The set A′ ⊂ [−π, π) is the set A ⊂ [0, 2π) mapped to residuals around
the true angle, and can be given as follows

A′ = {a ∈ A : [atan2(ŷ, x̂)− a+ π mod 2π]− π}

The density corresponding to this measure can be given as follows

fyk|xk(a | [x, y, x′, y′]T ) =
1√

2πσ2
a

exp

{
− 1

2σ2
a

d2

}
(8.2)

where
d = [atan2(ŷ, x̂)− a+ π mod 2π]− π

6. In fact, the noise term is assumed to be truncated Gaussian distributed, since the tails
of a true Gaussian distribution would continue beyond [−π, π). However, since the standard
deviation of the noise term is much less than π, the amount of probability mass beyond the
limits can be considered negligible.



8.2. TESTS 101

−5 0 5

x 10
4

−5

0

5
x 10

4

0

2

4

6

8

10

−5 0 5

x 10
4

−5

0

5
x 10

4

0.4

0.5

0.6

0.7

0.8

0.9

(a) (b)

Figure 8.3: (a) The single-target measurement likelihood function in the case of
the measurement yk = 7π/6 (b) The probability of detection for the same
sensor. Both the images illustrate the values of the functions with respect
to the (x, y) position.

The construction of the angular measurement model above contained many piece-
wise definitions, and was not too intuitive. Figure 8.3 (a) illustrates the measure-
ment model, showing an intensity image of values of fyk|xk(a | [x, y, x′, y′]T ) with
respect to x and y, when a = 7π/6. The measurement density fy|x(y | x) consid-
ered as a function of x for a fixed y is often referred to as the likelihood function
of measurement y = y.

The measurement model allowed also detections to be missed. For that
purpose, the function pd(v) was defined to determine the probability of detection
of a target position v. The model that was used in the experiments can be given
as follows.

pd([x, y, x
′, y′]T ) = exp

(
− 1

2σ2
r

‖[x̂, ŷ]T‖2

)

The sensor range parameter σr that was used in the experiments was 80 km.
Figure 8.3 (b) illustrates the values pd gets in the different (x, y) positions of the
state space. Finally, the sensor was allowed to produce false alarms. The default
setting was that 5% of the measurements were false alarms, i.e. pf = 0.05. False
alarms were assumed to be distributed uniformly in [0, 2π), i.e. ff (a) = 1/(2π)
for all 0 ≤ a < 2π.

8.2 Tests

The outputs of the tracking algorithm that were included in the analysis con-
sisted of the two estimates for the number of targets given in Equations (7.30)
and (7.31). The PHD visualisation was carried out according to the estimator
given in Equation (7.32). The surveillance region was divided into 20 equiwidth
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Figure 8.4: (a) The development of the estimates of target count. (b) A snapshot
of the PHD after processing the 90th measurement in the single-target
scenario.

intervals with respect to x and y dimensions, determining 400 equivolume (x, y)
resolution cells. The velocity resolution was one, i.e. the velocity components were
not distinguished in any manner.

Figure 8.4 (a) shows the development of the estimators for number of tar-
gets in the single-target scenario run with the default parameters. The uppermost
graph shows the development of the EAP estimator (the dotted line), and the true
number of targets (the solid line). The two graphs below show the development of
errors of the EAP and MAP estimators, i.e. the differences between the values of
the estimators and the true target count. Figure 8.4 (b) shows a snapshot of the
PHD approximation at one time instant, after processing the 90th measurement.
The star (pentagram) symbol in the PHD image corresponds to the true position
of a target. The asterisks denote the positions of the three sensors. Notice the
logarithmic scale of the intensities in the PHD image7. The numerical value of the
EAP estimator is shown in the title of Figure 8.4 (b) in addition to the current
time instant in seconds.

The actual tests consisted of three setups. The first setup analysed in
Section 8.2.1 tests how the increase in the number of targets affects the algorithm.
The effect of increased false alarm levels is considered in Section 8.2.2, while
Section 8.2.3 contains a test which determines how the algorithm can handle with
a mismatch between the true value of false alarm parameter and the parameter
value given to the algorithm. Finally, the results that were obtained from the
different setups are summarised in Section 8.2.4.

7. The absolute value of a particular bin of PHD is generally of no great importance. The
general shape of the PHD image and the current estimated number of targets are more impor-
tant.
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8.2.1 Different Number of Targets

This test was intended to provide a glance on the capability of the algorithm
to handle increasing number of targets. It is worth noticing, though, that the
measurement model that was used does not provide too much information on the
target situation. This is due the fact that the average number of measurements
per target decreases linearly with respect to the total number of targets. Conse-
quently, there is less information available for the algorithm to deal with a more
complicated scenario.

The tests in this scenario were run with the default parameter values. Only
the true number of targets was changed. Figure 8.5 shows the results obtained
for the two, the three and the four target scenarios. The corresponding single-
target scenario is shown in Figure 8.4. The results reflect what was expected:
the performance decreases quite rapidly, as the number of targets increases. The
results are quite reliable for up to two targets, but for a higher target count, the
results can be considered poor. In the three-target case, the algorithm seems to
“find”all the targets temporarily, as can be seen in the PHD snapshot of Figure 8.5
(b). In the four-target case, the algorithm never seems to truly find the targets,
but oscillates mostly between single-target and three-target hypotheses.

There can be, of course, several reasons for the performance degradation.
In author’s opinion, however, the measurement data is insufficient, providing low
number of true measurements per target, and can be considered the largest source
of error. The number of particles, 20000, can also be considered low for tracking
this many targets. It is obvious, that the state space that is effectively sampled
becomes larger, as more targets appear in the scenario. This increases the variance
in the results of the algorithm, so the number of particles would have to be
increased as the number of targets is increased. Figure 8.6 shows the results of
three runs of the algorithm with an identical input data, but different random
seeds. Although the results for all the runs are quite good, there is noticeable
variation in the results, especially in the beginning of the scenario. This can be
considered as evidence of an insufficient number of particles. If the number of
particles were sufficient, the Monte Carlo estimates would be relatively stable,
and would not change noticeably between the runs of the algorithm. The number
of particles could not, however, be increased due to the limited computational
resources.

8.2.2 False Alarm Rate

The second test setup consisted of test runs with the single-target and the two-
target scenario, with three different increased false alarm rates (FARs). The re-
sults for the single-target scenario with FARs 30%, 70%, and 80% are shown in
Figure 8.7. As a comparison, the result with the default FAR, 5%, is shown in
Figure 8.4. The PHD snapshots in Figure 8.7 (b) show how the algorithm reacts
to the false alarms. There are “ghost” tracks in addition to the true one. Due to
the increased FAR, there are less true target measurement, which delays the ini-
tiation of the track. This can be seen in Figure 8.7 (a), where the EAP and MAP
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Figure 8.5: (a) The development of the estimates of target count, with different
number of true targets. (b) The PHD snapshots after processing the 90th
measurement.
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Figure 8.6: (a) The development of the estimates of target count in the two-target
scenario with the default parameters. (b) The snapshot of the PHD after
processing the 111th measurement.
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Figure 8.7: (a) Development of the estimates of number of targets in the single-
target scenario, with different increased probability of false alarm levels.
(b) PHD snapshots after processing of the 111th measurement.
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estimates rise into unity approximately after the 15th measurement in the case
of 30% FAR, but only after the 50th measurement in the case of 70% FAR. Ac-
cording to this setup, the algorithm can handle false alarms rather well, providing
quite reliable tracking results with as high FAR as 70%. As FAR is increased to
80%, the algorithm seems to lose the track temporarily.

The algorithm was tested also in the two-target scenario, with three in-
creased FARs: 10%, 30%, and 50%. The development of the estimates of the
number of targets are shown in Figure 8.8. As expected, the performance of the
algorithm decreases more rapidly in the two-target scenario, when the FAR is
increased. The reason for this is, most probably, the same what was considered to
decrease the performance in the case of the three and the four-target scenarios:
insufficiency of the data. As FAR is increased, the number of true measurements
from each target decreases. Of course, as there are two targets, each of the non-
false-alarms are equiprobably from either one of the targets.

This test setup showed, most importantly, that the degradation of the
performance of the algorithm is gradual with respect to the increasing FAR.
This property is promising in view of such low-fidelity sensors, that are prone to
produce many false alarms.

8.2.3 Parameter Mismatch

In real world, the tracking model rarely matches the characteristics of the true
tracking environment. Most importantly, the parameters of the model that are
adjusted manually can be expected to be misleading in some cases. So, a track-
ing framework should be robust against incorrect parameter values, at least in
some extent8. Therefore, a test of robustness against a parameter mismatch was
included. Since there was a test how the false alarm rate affects, the chosen target
parameter was the percentage of false alarms.

The test was carried out using the single-target scenario. The only pa-
rameter value that was altered from its default value was the probability of false
alarm, pf . The FARs that were used in the experiment were 5%, 30% and 70%.
The input data, i.e. the measurements, were generated separately according to
each FAR. After that, for each input data, the algorithm was run with each of
the three values of the probability of false alarm parameter pf .

The mean absolute errors of the EAP and MAP estimates in the case of
all the combinations of the parameter values and the true (simulated) values are
shown in Table 8.1. The trend seems to be that the true parameter values pro-
duced the best results. However, for 5% FAR input data, the mean absolute error
of the EAP for algorithm running on 30% setting was the smallest. Similarly,
for 30% FAR input data, the algorithm running on pf setting 5% had a smaller
mean MAP error than the true setting. These “anomalies” can be explained by
the Monte Carlo variation in the output of the algorithm, and the particular in-
put data. Most importantly, though, the performance of the algorithm decreased

8. Of course, if an algorithm is made extremely robust against incorrect parameter values,
then the parameters do not affect in any way.
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Figure 8.8: (a) The development of the estimates of target count in the two-target
scenario with different increased probability of false alarm levels. (b) The
corresponding PHD snapshots after processing of the 111th measurement.
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gradually with respect to the mismatch in the parameter value. The worst result
was obtained with input data having 70% false alarms, and parameter value set to
5%. Figure 8.9 shows snapshots of the PHD after processing the 111th measure-
ment9. The gradual decrease of the performance with respect to the increasing
mismatch in the parameter value can also be seen in the PHD snapshots.

8.2.4 Summary of Results

Before getting into the summary of the results that were obtained during the
performed tests, there is a practical aspect, that is worth noticing. Figure 8.10
shows how the computational load of the algorithm10 increases with respect to the
mean cardinality of the particles. The processing time is not a direct function of
the mean cardinality, but the tendency can be seen: the processing load increases
approximately linearly with respect to the mean cardinality.

In light of the results that were obtained in the tests, the framework
seems promising. Even though the scenarios that were used were purely synthetic,
and can be easily judged toy examples, they provide a challenging task for any
tracking algorithm. There were spurious detections (false alarms) as well as missed
detections11, and the measurements were bearings-only type. The implemented
algorithm seemed to work out well in this challenging setup.

The algorithm showed robustness against relatively high false alarm levels.
In addition, the performance of the algorithm degraded gradually in the case of
invalid probability of false alarm parameter values. The number of particles that
is required to obtain stable behaviour of the algorithm is rather high, since there
was noticeable variation between the results obtained from different runs of the
two-target scenario with 20000 particles. In the case of bearings-only data with
zero or one measurements per report, the method was able to handle up to two
targets quite reliably, and so that the computational load did not increase too
much.

9. The colour bars are omitted due to a limited space, and since the absolute values of the
PHD are considered unimportant.
10. The measure of computational load is the elapsed CPU time (Matlab command cputime).
11. Such detections are also referred to as false positives and false negatives, respectively.
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Table 8.1: Mean absolute error of the estimates of number of targets, when the
parameter value was altered from the true ones. The errors of the EAP
estimate are shown in (a), and the errors of the MAP estimate in (b). The
smallest error value in each row is shown in boldface.

(a) (b)

True Parameter value

value 5% 30% 70%

5% 0.077 0.075 0.106
30% 0.104 0.086 0.107
70% 0.581 0.244 0.214

True Parameter value

value 5% 30% 70%

5% 0.047 0.050 0.087
30% 0.040 0.053 0.073
70% 0.480 0.180 0.153
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Figure 8.9: The PHD snapshots corresponding the setup in Table 8.1 after pro-
cessing the 111th measurement.
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Chapter 9

Conclusions

This thesis gathered together background theory for the random set tracking
framework. The background theory included results in general probability theory
and recursive Bayesian estimation. The finite random sets were considered as a
special case of an abstract random element. The theory of random sets was pre-
sented in view of finite set measures and general integrals with respect to those
measures. Sequential Monte Carlo (SMC) was selected as the computational strat-
egy for practical implementation of random set estimation. The thesis included
also a literature review of some common SMC methods.

The application-oriented part of the thesis covered a literature review and
a summary of Bayesian target tracking methods. Even though the random set
formalism of target tracking includes some theoretical aspects, that are not con-
sidered in the prevailing state of the art tracking framework, they share a lot in
common. Random set models for tracking include the single-target dynamic mod-
els and the single-target measurement models, that are used by any conventional
target tracking system. The random set tracking framework was presented in this
thesis as a straightforward generalisation of the conventional tracking techniques.

The thesis contained derivation of a simple random set model for track-
ing. The model can be considered, however, to be sufficiently general for practical
application. The random set dynamic model included independent target mo-
tions, an independent Poisson birth model and an independent death model. In
addition to those random set sensor models that have appeared in the literature,
this thesis proposed a model for such sensors that include at most one measure-
ment in each report. After introducing a random set tracking model, a simple
and straightforward SMC implementation performing recursive estimation in the
model was introduced. The results that were obtained in the limited experiments
are summarised in Section 9.1. The experiments and the obtained results can be
considered best as a “proof-of-concept”, rather than tests assessing the practical
usability of the method. Section 9.2 contains the future development ideas, which
were considered important.

113
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9.1 Results

The SMC implementation was tested in rather simple yet challenging bearings-
only tracking scenarios. The experimental results show that the random set frame-
work has potential. Based on the results that were obtained, one can summarise
that the proposed random set implementation can be applied to tracking of up
to two targets quite reliably. The algorithm showed robustness against relatively
high false alarm rates, as well as a mismatch in the true parameter value and the
parameter value of the algorithm. Such situations, in which the false alarm rate is
high, can be considered hard to tackle with conventional framework including a
heuristics-based track initiation algorithm. At least such algorithms that process
the input data in a fixed size time-window may be problematic.

The algorithm that was developed is a rather simple one. Further research
and development is required for the purposes of real-life application. The com-
putational complexity of the implementation is high. It seems, that without sub-
stantial reduction of the computational complexity, the SMC implementation of
the random set Bayes recursion cannot be applied to tracking of a large number
(tens or more) of targets. The computational complexity of the algorithm in-
creases only approximately linearly with respect to the number of targets, when
the number of Monte Carlo samples is kept fixed. However, to achieve a given
accuracy, the number of Monte Carlo samples needs to be increased, as the num-
ber of targets increases. Hence, the computational complexity of the algorithm
increases more rapidly in practice. For such purposes, when there are a lot of
targets, the PHD approximation of the random set tracking framework may be
considered a better alternative. For further development purposes, the developed
simple implementation can serve as a good baseline performance test.

The tests that were included in this thesis considered only few aspects.
There are dozens of other parameters, that were fixed throughout the experiments,
and need to be considered in thorough tests. For example, the birth intensity and
the probability of survival parameters should be examined. Other types of sensors
models in addition to angular-only sensors might be considered as well. The state
space that was considered, S ⊂ R4, was quite low-dimensional considering real-
life application. In addition, the state space that was used in the experiments
did not include any non-geokinematic quantities, i.e. attributes. If attributes are
included, they may affect the performance of the algorithm substantially.

9.2 Future Work

The theoretical part of the thesis provides a solid basis for further development of
random set target tracking algorithms. During writing of this thesis, some ideas for
further development have already arisen. This section presents the three branches
of possible further development, that were considered the most promising, and
worth stating.

The predictive importance distribution that was used in the implementa-
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tion is ineffective, especially since the born target states are drawn from a sparse
(uniform) prior distribution, without any dependence on the measurements. Many
samples are drawn from very unlikely regions of the state space, and consequently
become discarded almost immediately in the next resampling step. Therefore, a
choice of a better importance distribution could be beneficial. Especially such a
choice of an importance distribution that takes the measurements into account in
drawing states of the born targets could be considered. An importance distribu-
tion other than the predictive one raises a practical issue, which may affect the
computational complexity of the algorithm. The use of the predictive importance
distribution avoided the need to compute Equation (7.13), but any other choice
of the importance distribution requires the ratio of the dynamic model density
and the importance density to be computed.

The state space S is typically at least 6-dimensional in a real-world sce-
nario1. When there are multiple targets, say n, the state space that is sampled
is effectively Sn. Monte Carlo sampling in higher dimensions leads to higher vari-
ance estimates, or increased number of samples to attain a given accuracy. This
problem has been proposed to be partially overcome by Rao-Blackwellisation
of sampling schemes. Loosely speaking, Rao-Blackwellisation is a Monte Carlo
sampling framework in which some parts of the model are integrated analytically,
while the others are sampled. Rao-Blackwellisation has been proposed to tracking
multiple targets with bearings-only measurements [Särkkä et al. 2004]. It could
be possible to derive a similar approach in the random set framework.

The PHD approximation in the random set tracking framework has drawn
much attention recently. The PHD approach is attractive because it reduces the
filtering task to the state space S, instead of the full random finite set space, which
is infinite dimensional2. The PHD method is perhaps the single most interesting
area of further research. Considering the development of a practical random set
tracking system, research on an efficient SMC implementation of the PHD filter
will most likely produce the best results.

In addition to these ideas of further development of the tracking algo-
rithm, there is a practical issue, considering the output of the algorithm. It is
not straightforward to obtain theoretically sound estimators for the multitarget
state, when the posterior is represented with random samples. This is the case
in the SMC implementation. Hence, an important aspect, that requires further
research, is finding a good method to extract such an estimate.

1. The dimensions corresponding to the 3D position and velocity components, when a constant
velocity model is used.
2. The random set space is essentially of form

⋃∞
k=0 Sk.
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Appendix A

Analysis

This chapter is intended to cover some definitions and results of basic analysis,
including topological spaces, abstract measures and general integration. The re-
sults are needed in the thesis, e.g., in the definitions of a probability space and a
random element, and in construction of the theory of random sets. This chapter
is based mostly on the book [Gariepy and Ziemer 1995]. Some of the results can
also be found on [Royden 1989]. The chapter is not intended to be an “introduc-
tion to analysis”, thus the reader is advised to read an introductory book of basic
analysis, for example [Rudin 1976]. For deeper understanding of measure theory
and integration, the book of Gariepy and Ziemer [1995] is recommended.

A.1 Topology

The definition of an abstract topological space is given first. A topology defines
the open and the closed sets in a space.

Definition A.1 A topological space (X, T ) consists of a nonempty set X and
a collection T of subsets of X, that has the following properties

1. ∅ ∈ T and X ∈ T .
2. If S ⊂ T , then

⋃{U : U ∈ S} ∈ T .
3. If S ⊂ T and S is finite, then

⋂{U : U ∈ S} ∈ T .
The sets in T are called the open sets and their complements are the closed
sets.

Frequently, the closure of an arbitrary set A ⊂ X is needed.

Definition A.2 The closure of a set A, denoted by A, is defined as follows

A , {x ∈ X : U ∩ A 6= ∅ for each open set U containing x}
The two most “extreme” topologies that one can define are given in the

following example.

Example A.3 The discrete topology on X is such that all subsets of X are
open. That is, T = P(X). The mini topology on X is T = {∅, X}. ♦
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Most of the interesting topologies lie in between these two. However, the discrete
topology is often used, when X is finite.

A.1.1 Basis and Product Topology

It is often convenient to describe a topological space using a smaller collection of
sets, the basis [Kaleva 2003].

Definition A.4 A collection of sets D ⊂ T is a basis for the topological space,
if each A ∈ T can be represented as a union of basis sets, A =

⋃
i∈I Di, where

Di ∈ D.

Sometimes, even a smaller collection of sets, the subbase, is considered.

Definition A.5 A subbase of a topology S ⊂ T is such a collection of sets, that
the family of all finite intersections of the members of the subbase forms a basis
for a topological space.

Every nonempty family S of subsets of a space X is a subbase for a topol-
ogy [Gariepy and Ziemer 1995]. The relationship between the subbase, the basis,
and the topology can be summarised as follows.

subbase
finite

T
−−−−→ basis

arbitrary
S

−−−−−−→ topology

Sometimes, we deal with Cartesian products of two (or more) topological
spaces. The definition of the product topology is given as follows [Royden 1989,
p. 184].

Definition A.6 If (X, TX) and (Y, TY ) are two topological spaces, their product
topology (X × Y, TX×Y ) has the base

U1 × U2, where U1 ∈ TX , U2 ∈ TY
A.1.2 Borel Sets and σ-algebra

The concept of a σ-algebra1 is needed for the definition of the Borel sets. In gen-
eral, σ-algebras are necessary in measure theory, thus also in probability theory.

Definition A.7 A σ-algebra M on some set X is such a collection of subsets
of X that the following properties are satisfied.

1. X ∈M.
2. If A ∈M, then {A ∈M.
3. If Ai ∈M for i = 1, 2, . . ., then ∪∞i=1Ai ∈M.

It is clear, from the definition, that a σ-algebra is a collection of sets, that is closed
under countable intersection and union, and contains the whole set X and the
empty set ∅. It is sometimes useful to consider a σ-algebra, that contains some
(arbitrary) collection of subsets of the space.

1. The term σ-field is also used.



A.1. TOPOLOGY 125

Definition A.8 The σ-algebra generated by G ⊂ P(X), denoted σ(G), is the
smallest σ-algebra, that contains all the sets in the collection G.

Such a σ-algebra always exists, since P(X) is a σ-algebra. The smallest σ-algebra
can be obtained by intersection of all the σ-algebras that contain the required
sets. The next definition gives a natural σ-algebra in a topological space.

Definition A.9 In a topological space X, the smallest σ-algebra that is generated
by the collection of closed sets F , is called the Borel sets, and denoted by B(X) =
σ(F).

Clearly, the open and the closed sets of X are Borel sets, as well as their comple-
ments, countable unions, and intersections.

In the most typical topological space in engineering, R endowed with the
common topology, the Borel sets are all the closed and the open intervals, their
complements, intersections, and unions. Therefore, an example of a non-Borel
set in this topology is quite hard to imagine, but there exists such [Gariepy and
Ziemer 1995]. It is obvious, though, that one cannot construct one using the
“standard” set operations on the “standard” sets, since the Borel sets include just
those.

A.1.3 Certain Types of Topological Spaces

Let us define some more concepts, which are related to topological spaces, starting
with a Hausdorff space and a locally compact space [Gariepy and Ziemer 1995;
Royden 1989].

Definition A.10 A topological space (X, T ) is said to be a Hausdorff space,
if for any x, y ∈ X, x 6= y there are disjoint2 open sets Ux, Uy ∈ T containing x
and y.

The convenience of Hausdorff spaces may become clear by noticing that in any
Hausdorff space, the limit point of a sequence is unique, if it exists. In addition,
any singleton3 in a Hausdorff space is closed. [Kaleva 2003]

Next, the concept of compact sets is introduced. Compact sets are con-
venient in metric spaces, because they contain the limit points of the Cauchy
sequences. Metric spaces and Cauchy sequences are introduced in Section A.2.

Definition A.11 Let (X, T ) be a topological space. A collection of open sets
G ⊂ T is an open cover for a set A ⊂ X, if A is covered by G, i.e. A ⊂ ⋃{G :
G ∈ G}. A set K ∈ T is compact, if every open cover of K has a finite subcover
H ⊂ G.

Definition A.12 A topological space X is locally compact, if for each x ∈ X
there is such an open set U ∈ T that x ∈ U and the closure U is compact.

2. Ux and Uy are disjoint, if Ux ∩ Uy = ∅.
3. Singleton is a set with exactly one element.



126 APPENDIX A. ANALYSIS

Definition A.13 A set Y is dense in X, if Y = X. The space X is separable,
if there exists a countable dense set in X.

A.2 Metric Spaces

Definition A.14 A set X is said to be a metric space, if there is a function
d : X ×X → R that has the following properties for all x, y, z ∈ X

1. d(x, y) > 0 if x 6= y, and d(x, x) = 0.
2. d(x, y) = d(y, x).
3. d(x, z) ≤ d(x, y) + d(y, z).

A metric space is often denoted by (X, d).

The function d above is often referred to as a metric or a distance function. Using
the distance function, one can define an open ball as follows [Gariepy and Ziemer
1995].

Definition A.15 An open ball in a metric space (X, d) is defined as follows

Bx(r) , {y ∈ X : d(x, y) < r}
The point x ∈ X is the centre, and r > 0 is the radius of the ball.

Having defined an open ball, one may define a topology to any metric space. Such
a topology is defined next [Gariepy and Ziemer 1995].

Definition A.16 The topology induced by a metric is one having the subbase

S = {Bx(r) : x ∈ X, r > 0}
Next, two examples of metric spaces are given. These spaces are, in fact,

used in the application part of this thesis.

Example A.17 The Euclidean space Rd endowed with the Euclidean norm
metric

d(x, y) = ‖x− y‖ =
√

(x− y)T (x− y)

is a metric space. ♦

The topological space Rd induced by the Euclidean norm is the “standard” topol-
ogy in Rd. The open sets in Rd are those that are considered open in elementary
calculus.

Example A.18 A finite space D endowed with the discrete metric

d(x, y) = δx(y) =

{
0, y = x

1, y 6= x

is a metric space. ♦
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The topology of a finite space D induced by the discrete metric is the discrete
topology, given in Example A.3.

In metric spaces, convergence of sequences can be characterised conve-
niently using the metric d. There are some concepts, that are related to conver-
gence in metric spaces.

Definition A.19 Let {xi}∞i=1 be a sequence in X. The sequence converges to
x ∈ X, denoted as limi→∞ xi = x, if for each ε > 0, there exists a m ∈ N, such
that d(x, xi) < ε for all i > m.

The sequence is a Cauchy sequence, if for each ε > 0, there is a m ∈ N
such that for all i, j > m, d(xi, xj) < ε. The metric space (X, d) is complete, if
every Cauchy sequence converges in X.

It is rather easy to prove that R equipped with the Euclidean norm metric is
a complete metric space. On the other hand, R \ {0} is not complete, since the
Cauchy sequence {1/i}∞i=1 does not converge in R \ {0}.

A.3 Functions

In the following definitions, it is assumed that f : X → Y is a function, i.e. for
each x ∈ X the function relates a unique value y ∈ Y , which is denoted as
y = f(x).

Definition A.20 The preimage of a function f is defined for all sets A ⊂ Y
as follows ←−

f (A) , {x ∈ X : f(x) ∈ A}
Definition A.21 The range of a function, denoted as rng(f), is defined as

rng(f) , {y ∈ Y : f(x) = y, for some x ∈ X}
There are some special types of functions, which are introduced next

Definition A.22 The characteristic function of a set A ⊂ X is defined as
follows

χA(x) ,
{

1, x ∈ A
0, x /∈ A

If the range of a function X → R is finite, then the function is called simple.
A simple function can be represented as a weighted finite sum of characteristic
functions. The next definition covers also the simple functions.

Definition A.23 If the range of a function f : X → R is countable, then the
function is called countably simple. A countably simple function can be given
using characteristic functions as follows.

f(x) =
∑

a∈rng(f)

aχ←−
f ({a})(x)
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Sometimes, it is necessary to work separately with the positive and the negative
parts of an extended real valued function f : X → R. The negative and positive
parts are denoted as follows

f+(x) =

{
f(x), f(x) > 0

0, f(x) ≤ 0
f−(x) =

{
−f(x), f(x) < 0

0, f(x) ≥ 0

The original function can be reconstructed as f(x) = f+(x)− f−(x).
Finally, a function that relates two topological spaces with each other is

introduced.

Definition A.24 Consider two topological spaces (X, TX) and (Y, TY ). A func-

tion f : X → Y is continuous, if
←−
f (V ) is open in X for each open set V in

Y . A bijective function f : X → Y is a homeomorphism, if both the function
f and its inverse f−1 are continuous..

Clearly, a homeomorphism relates the topological structure of X and Y to each
other. That is, if there is a homeomorphism f : X → Y , then X and Y can be
considered topologically invariant, and are said to be homeomorphic.

A.4 Measure Theory

This section introduces very briefly the concepts of a measure, a measure space,
and a measurable function. All the definitions are given in a general form.

Definition A.25 The triple (X,M, µ) is a measure space, ifM is a σ-algebra
on a set X, and µ : M → [0,∞] is a measure on M, which has the following
properties.

1. µ(∅) = 0.

2. If {Ei}∞i=1 is a sequence of disjoint sets, Ei ∩Ej = ∅ whenever i 6= j, then

µ

( ∞⋃
i=1

Ei

)
=
∞∑
i=1

µ(Ei)

The sets E ∈M are referred to as the measurable sets.

The property 2 above is referred to as countable additivity. Sometimes, the mea-
sure is omitted, and one refers to a measurable space (X,M). In probability
theory, restricted classes of measures are often required.

Definition A.26 A measure µ on a space X is σ-finite, if there exists such sets
Ei ∈ M that

⋃∞
i=1Ei = X and µ(Ei) < ∞ for all i. The measure is finite, if

µ(X) <∞.



A.4. MEASURE THEORY 129

A.4.1 Properties of Measures

If there are two measures µ1 and µ2 defined on a same σ-algebra M, then one
may define absolute continuity of the measures as follows.

Definition A.27 A measure µ1 is absolutely continuous with respect to a
measure µ2, denoted µ1 � µ2, if for all E ∈ M we have µ2(E) = 0 =⇒
µ1(E) = 0.

Often, the concept of a null set4, i.e. a set of measure zero, is encountered.
This is due to the fact that null sets do not affect the value of an integral, which
is defined in Section A.5. The following definition clarifies the concepts.

Definition A.28 A set N ∈ M is a µ-null set, if µ(N) = 0. A condition is
said to hold µ-almost surely, (µ-a.s.), or µ-almost everywhere (µ-a.e.), if
the condition holds everywhere except in a µ-null set.

Often, when the measure is clear from the context, a set may be referred to as a
null set, and some condition is just said to hold a.s. or a.e.

The definition of a measure restricted the range to be [0,∞]. Sometimes,
the concept of a signed measure comes handy. We give the definition of a signed
measure as follows [Shiryaev 1996, p. 196].

Definition A.29 The set function ν = µ1−µ2 is a signed measure, if at least
one of the measures µ1 and µ2 is finite.

Signed measures have similar properties to (positive) measures. In fact, the book
of Gariepy and Ziemer [1995] defines a signed measure through the following
properties.

1. The range of ν does not contain both −∞ and ∞.
2. ν(∅) = 0.
3. If {Ei}∞i=1 is a disjoint sequence of measurable sets, then

ν

( ∞⋃
i=1

Ei

)
=
∞∑
i=1

ν(Ei)

A.4.2 Common Measures

The most common measure one encounters is the Lebesgue measure, defined in
Rd (endowed with the usual topology). The measure is defined indirectly via the
volume of a hypercube [Gariepy and Ziemer 1995].

Definition A.30 The volume of a closed interval (hypercube) I = ×di=1[ai, bi]
in Rd is defined as

v(I) =
d∏
i=1

(bi − ai)

4. In this thesis, the measure spaces are required to be complete, i.e. every subset of a null
set is assumed measurable.
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The Lebesgue measure of a Lebesgue measurable set E ∈M is defined as

λ(E) = inf
S

∑
I∈S

v(I), where S is countable and E ⊂
⋃
I∈S

I

In this thesis, one needs to know that all the Borel sets in Rd are Lebesgue
measurable. There exists, however, non-Borel sets that are Lebesgue measurable.
The intuition telling that the Lebesgue measure is the “volume” of a set in Rd is
the most important.

Another example of a common measure is the so called counting measure
[Royden 1989, p. 55]. The counting measure can be defined to any space, but it
is most natural to define in a finite or a countable space.

Definition A.31 The counting measure c : P(X) → [0,∞] on a set X is
defined as the number of elements, i.e. the cardinality, of a set.

c(A) , |A|

If A is infinite (countable or uncountable), the value of c is infinity.

A.4.3 Measurable Functions

A measurable function can be considered a “well-behaved” function in the sense
of measures. The definition of a measurable function can be given as follows

Definition A.32 Let (X,M, µ) and (Y,N , ν) be two measure spaces. A function

f : X → Y is measurable with respect to M, or M-measurable, if
←−
f (E) ∈ M

whenever E ∈ N .

One sees, that a measurable function transfers a measure µ on M to a measure
on N . This is essential in the definition of a random element.

A useful notation that is related to functions in general, but most impor-
tantly to measurable functions, is the σ-algebra induced by a function.

Definition A.33 Let (X,M) and (Y,N ) be measurable spaces. The σ-algebra
induced by a function f : X → Y , is the smallest σ-algebra containing all the
preimages of measurable sets in Y .

σ(f) , σ
(
{←−f (N) : N ∈ N}

)

Clearly σ(f) ⊂M, if f is M-measurable.

A.4.4 Some Measure Spaces

The above definitions of a measure and a measurable function are very general.
A common special case of a measure space is the extended real numbers Y = R.
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Definition A.34 The space R = R∪{−∞}∪{∞} is the extended real num-
bers. In this space, the addition and product operations are defined as follows

a±∞ = ±∞ a/(±∞) = 0 b · (±∞) = ±∞
(±∞) + (±∞) = ±∞ (±∞)/(±∞) = undef. (−b) · (±∞) = ∓∞
(±∞) + (∓∞) = undef. (±∞)/(∓∞) = undef. 0 · ±∞ = 0

for all a ∈ R, and b ∈ (0,∞].

The order topology having a subbase consisting of the sets [−∞, a) and (b,∞]
where a, b ∈ R is always used with R. The Borel sets in this topology are

B(R) = {B,B ∪ {∞}, B ∪ {−∞}, B ∪ {∞} ∪ {−∞} : B ∈ B(R)}

where B(R) are the Borel sets in R according to the Euclidean topology. In the
case Y = R, a measurable function f : X → Y is called Borel-measurable, and
if also X = R, the function is a Borel function.

A more general class of measurable spaces are the Borel spaces [Shiryaev
1996, p. 229].

Definition A.35 A measurable space (X,N ) is a Borel space, if it is Borel
equivalent to a Borel subset of the real line. That is, there exists an injective
function ϕ : X → R such that

1. ϕ(X) ≡ {ϕ(x) : x ∈ X} ∈ B(R)

2. ϕ is N -measurable, i.e. ←−ϕ (A) ∈ N whenever A ∈ B(R).

3. ←−ϕ is B(R)-measurable, i.e. ϕ(B) ∈ B(R) whenever B ∈ N .

At last we state without proof that complete and separable metric spaces, and in
particular (Rn,B(Rn)), and (R∞,B(R∞)) are Borel spaces [Shiryaev 1996, p. 230].

A.5 Integration

This section defines the concept of an integral in a general sense. The Riemann
integral that is considered most of the time in engineering is sufficient for most
purposes. There are some applications, however, in which more general integrals
are needed. In addition, general integration covering both the discrete-valued
integration (summation), and the continuous-valued cases is theoretically handy.

A.5.1 Definitions

A countably simple function can be considered a “piecewise constant” function.
The integral of a nonnegative countably simple measurable (CSM) function is
defined quite naturally, as follows.
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Definition A.36 If f : X → [0,∞] is a CSM nonnegative function, the integral
of the function is defined as follows.

∫
f(x)dµ(x) ,

∞∑
i=1

aiµ
←−
f ({ai})

Notice, that the value of the sum may be infinite. Often, the variable that is
integrated is omitted in notation, for example

∫
f(x)dµ(x) is denoted frequently

as
∫
fdµ. Next, the definition is extended to cover any CSM function.

Definition A.37 Let f : X → R be a CSM function. Then, if either
∫
f+dµ or∫

f−dµ is finite, the integral of f is defined to be

∫
fdµ ,

∫
f+dµ−

∫
f−dµ

The above definitions can be considered intuitive, and straightforward. The inte-
gral of a measurable function, if it exists, is defined using the integrals of countably
simple functions.

Definition A.38 Let f : X → R be a measurable function. Then, the upper
integral of f is defined as follows

∫ ∗
fdµ , inf

{∫
gdµ : g is CSM, and g

a.s.≥ f

}

and the lower integral as follows

∫

∗
fdµ , sup

{∫
gdµ : g is CSM, and g

a.s.≤ f

}

If the values of the upper and lower integrals agree, and the common value is
finite, the function f(x) is integrable (with respect to µ), and the integral of
the function is ∫

fdµ ,
∫ ∗

fdµ =

∫

∗
fdµ

A shorthand notation, that is commonly used, is the integral over a measurable
set A ⊂ X, and it is defined as follows

∫

A

fdµ ,
∫
χAfdµ (A.1)

A.5.2 General Properties

Here, we list some useful properties of a general integral. The results are given
without proof. Consult, e.g., Gariepy and Ziemer [1995] for proofs and further
discussion.
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Theorem A.39 At first, we notice that if f is a measurable function, and |f |
is integrable, then f is integrable. Suppose that f and g are integrable functions.
Then, the following statements are true.

1. If a, b ∈ R are constants, then
∫
af + bgdµ = a

∫
fdµ+ b

∫
gdµ.

2. If f(x) ≤ g(x) µ-a.e., then
∫
fdµ ≤ ∫ gdµ.

3. If E is measurable, then fχE is integrable.

4.
∣∣∫ fdµ

∣∣ ≤ ∫ |f |dµ.

Theorem A.40 (Monotone Convergence Theorem) Let {fk}∞k=1 be a se-
quence of nonnegative measurable functions, such that fk ≤ fk+1 for all k. Then,

lim
k→∞

∫
fkdµ =

∫
lim
k→∞

fkdµ

Suppose (X,MX , µ) and (Y,MY , ν) are two measure spaces. An impor-
tant question may arise, that how one can construct a measure to X × Y from
the measures µ and ν. Again, we do given the construction of the measure, but
refer to [Gariepy and Ziemer 1995] that such a measure can be constructed. The
key properties of the product measure space can be found within the following
theorem.

Theorem A.41 (Fubini) Suppose that (X,MX , µ) and (Y,MY , ν) are measure
spaces, and that (X × Y,MX×Y , µ × ν) is their product measure space. The
product measure (µ× ν) has the following properties:

1. If A ∈MX and B ∈MY , then A×B ∈MX×Y .

2. (µ× ν)(A×B) = µ(A)ν(B).

3. If S ∈MX×Y is σ-finite with respect to µ× ν, then the following holds

Sy = {x : (x, y) ∈ S} ∈ MX , for ν-a.e. y ∈ Y .

Sx = {y : (x, y) ∈ S} ∈ MY , for µ-a.e. x ∈ X.

(µ× ν)(S) =

∫

X

ν(Sx)dµ(x) =

∫

Y

µ(Sy)dν(y)

4. Let f be a µ× ν-integrable function. Then,

∫

X×Y
f(x, y)d(µ× ν)(x, y) =

∫

X

[∫

Y

f(x, y)dν(y)

]
dµ(x)

=

∫

Y

[∫

X

f(x, y)dµ(x)

]
dν(y)

Fubini’s theorem states that the integration order can be changed in an iterated
integral. In addition, of course, it states that the “partial results” are defined, and
integrable. For example, g(y) = f(x, y) is ν-integrable for µ-a.e. x, and h(x) =∫
Y
f(x, y)dν(y) is µ-integrable.
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A.5.3 Relationship with Riemann Integral and Sum

The Lebesgue integral agrees with the elementary Riemann integral, whenever a
function is Riemann-integrable. That is, if f(x) is Riemann integrable, then it is
also Lebesgue integrable with the same integral value,

∫
f(x)dλ(x) =

∫
f(x)dx (A.2)

Notice, however, that for some function there may exist an improper Riemann
integral, but not the Lebesgue integral. For additional information of “Riemann-
like” integrals, and the Lebesgue integral, see the article [Bartle 1996].

In addition, the integral over a finite space endowed with the counting
measure reduces to an ordinary sum over the elements in the space. This means
that if X is finite, then ∫

f(x)dc =
∑
x∈X

f(x) (A.3)

Obviously, if X is countable, the finite sum above is replaced by an infinite one.

A.6 Differentiation

This section introduces the concept of a Radon-Nikodym derivative (RND). RND
is a generalisation of the elementary derivative, similarly as the general integral
can be considered a generalisation of the Riemann-integral. RND allows to rep-
resent probability measures with respect to some other measures using their den-
sities. The definition is given according to [Shiryaev 1996, p. 196].

Theorem A.42 (Radon-Nikodym) Let (X,M) be a measurable space, with a
σ-finite measure µ. Let ν be a signed measure on (X,M), such that ν � µ. Then,
there exists such a M-measurable function f : X → R that

ν(A) =

∫

A

fdµ

for all A ∈M.

The function f , denoted by dν/dµ, is the Radon-Nikodym derivative of ν
with respect to µ. If ν is a positive measure, then the function f can be selected
so that f(x) ≥ 0 for all x ∈ X.

The next theorem gives some convenient properties of RND [Shiryaev
1996, p. 231].

Theorem A.43 Let µ and ν be σ-finite measures, µ � ν, and f a measurable
function. Then, ∫

fdµ =

∫
f

dµ

dν
dν (A.4)
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If, in addition, ξ � µ is a signed measure, then

dξ

dν
=

dξ

dµ
· dµ

dν
(ν-a.s.) (A.5)

dξ

dµ
=

dξ/dν

dµ/dν
(µ-a.s.) (A.6)

Proof. By definition of RND, Equation (A.4) holds for f = χA, thus also for
nonnegative countable simple functions. The general case follows from the de-
composition f = f+−f−, the fact that any nonnegative function can be approxi-
mated by an increasing sequence of countably simple functions, and the Monotone
Convergence Theorem (A.40).

Equation (A.5) follows from Equation (A.4) by letting f = dξ/dµ, and
the observation that ξ � ν. Then,

∫

A

dξ

dµ
· dµ

dν
dν = ν(A) =

∫

A

dξ

dν
dν

for arbitrary measurable set A. Finally, Equation (A.6) follows directly from Equa-
tion (A.5), by the observation that the set {dµ/dν = 0} is µ-null. �

Remark A.44 If one constructs a measure on R using a function f : R→ [0,∞)
with the property

∫
fdλ = 1, so that P (A) =

∫
A
fdλ, then the RND of the

measure agrees with the elementary derivative dP/dλ = dF/dx = f , where
F (x) = P ((−∞, x]) is the cumulative distribution function.
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Appendix B

Bayesian Networks

Bayesian networks (BNs) provide a method for representing probabilistic models
graphically. Most importantly, a BN graph contains information on the assumed
dependencies (or equivalently, the independence assumptions) between the ran-
dom elements in a model. In many applications, this is the most interesting in-
formation one needs to know about a model.

Often the concept of Bayesian networks is restricted into certain special
cases. The most common is to consider only discrete valued random variables [e.g.
Jensen 2001], while some authors assume conditional Gaussian (CG) distribu-
tions, allowing both discrete and conditionally multivariate Gaussian distributed
random variables [Cowell et al. 2003; Lauritzen 2002]. The restriction introduces
some simplifications to the inference theory. In this thesis, the primary purpose
of the Bayesian networks is to provide a concise graphical representation, so in-
ference need not be considered explicitly. An interested reader can find more
information on Bayesian networks, for example, in the following references:

� Jensen [2001] is an introductory book, that may be considered as a “first
course” in BNs. The book is restricted into discrete-valued random vari-
ables.

� Murphy [2003] provides a good tutorial to dynamic Bayesian networks.
� Murphy [2002] provides an extensive survey of theory of dynamic BNs,

and a comprehensive list of references.

B.1 Definitions

Before the definition of a Bayesian network (in the sense of this thesis) is given,
some observations are needed. Suppose (Ω,M, P ) is a probability space. Assume
that there is a finite number of random variables {xi}nk=1 in measurable spaces
(Si,Ni). One can define Gk = σ(x1, . . . ,xk) for k = 1, . . . , n. Then, it is obvious
that G1 ⊂ · · · ⊂ Gn ⊂ M. The following conditional probability can be defined
for all Bk ∈ Gk.

P (Bk | Gk−1)(ω) = E [χBk | Gk−1] (ω) =
dQ

dP
(ω)

137
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where Q(A) = P (A ∩ Bk). The RNDs exists, since Q is absolutely continuous
with respect to P (restricted to the σ-algebra Gk−1). Assuming all the conditional
probabilities regular, one sees that [Stratonovich 1968, pp. 306–307].

P (Bk) =

∫
· · ·
∫
P (Bk | Gk−1)(ωk)dP (ωk | Gk−2)(ωk−1) · · · dP (ω1)

Alternatively, one can see that the above implies the following form.

P (x1 ∈ A1, . . . ,xn ∈ An) (B.1)

=

∫

A1

· · ·
∫

An−1

P (An | x1:n−1 = x1:n−1)dP (xn−1 | x1:n−2 = x1:n−2) · · · dP (x1)

If the random elements have a joint density function fx1,...,xn(x1, . . . , xn) with
respect to a σ-finite product measure in space

∏∞
k=1 Sk, then the decomposition

can be given in terms of density functions.

fx1,...,xn(x1, . . . , xn) = fx1(x1)
n∏

k=2

fxk|x1:k−1
(xk | x1:k−1) (B.2)

where the conditional densities fxk|x1:k−1
are given analogously to Equation (2.6),

fxk|x1:k−1
(xk | x1:k−1) =





fx1:k
(x1:k)

fx1:k−1
(x1:k−1)

, fx1:k−1
(x1:k−1) > 0

0, fx1:k−1
(x1:k−1) = 0

What was pointed out is that the joint behaviour of the random elements x1, . . . ,xn
can be characterised by a set of regular conditional probabilities. Now we are ready
to proceed to the definition of a Bayesian network.

Definition B.1 (Bayesian network) The definition is given in two parts: first
the graph theoretic definition, and then the interpretation of the graph.

1. A Bayesian network (BN) is a directed acyclic1 graph (V,E), consisting
of a set of vertices V and set of directed edges E. Each directed edge
(u, v) ∈ E connects one vertex u ∈ V to another v ∈ V .

2. Each vertex v ∈ V in a BN graph corresponds to one random element.
The edges correspond to the dependencies between the random variables,
so that according to the conditional distributions given in Equation (B.1),
there is an edge from each x1, . . . ,xk−1 to xk. If there is a (conditional)
independence of random elements, the corresponding edges are omitted
from the BN graph.

The above definition is rather informal. The idea of the BN representation will
perhaps become clear via a couple of examples.

1. A graph is cyclic, if one can move along the directed edges (in the direction they are
pointing) infinitely. An acyclic graph is one that is not cyclic.



B.1. DEFINITIONS 139
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c d b
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Figure B.1: Examples of Bayesian networks. In (a) and (b), V = {a, b, c,d}. (a)
A BN with no independence assumptions. (b) A BN with one indepen-
dence assumption. (c) A BN with emphasised (dotted border) observation
variable b.

Example B.2 Consider first the general case with no independence assumptions.
The BN graph is shown in such a case for four random elements in Figure B.1
(a). In the situation when there are no independence assumptions, the BN graph
is “full”, i.e. there is an edge between every two nodes. It is worth noticing that
the Bayesian network graph is not unique. This is due to the fact that one can
perform the factorisation in Equation (B.1) in an arbitrary order, each of which
results in a different BN graph.

The second example in Figure B.1 (b) is modified from the first example
so that there is one independence assumption included, which leads into omitting
two edges. The assumption is that

P (d ∈ D | a, b, c) = P (d ∈ D | c)

Usually, the BN graphs are even more sparse than the one in this example.
Finally, one extreme case is that all the random elements in the Bayesian

network are assumed independent. Then, by definition, their conditional proba-
bilities can be given without dependencies, and the BN graph contains no edges
at all. In the case of the four random elements in Figure B.1, and assuming that
the joint distribution admits a density, the density can be decomposed as follows

fa,b,c,d(a, b, c, d) = fa(a)fb(b)fc(c)fd(d)

Of course, such a BN graph with no edges is not too interesting either. The usual
case is that the BN is connected, i.e. there are no unconditionally independent
random elements. ♦

Sometimes, it is convenient to emphasise such a random element in a
BN, that is observed in estimation. That is, consider the Bayesian estimation
problem, where a is the unknown, unobserved parameter, and b is the noisy,
indirect measurement of a. It is convenient to emphasise this setting already in
the BN graph. In Figure B.1 (c), this situation is shown, and the observation
variable is denoted so that the node border is dotted. This is the notation that is
used in this thesis to emphasise observed variables.
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Remark B.3 Definition B.1 restricted the BN to contain a finite number of ran-
dom elements. Frequently, in this thesis, discrete-time stochastic processes with
countably infinite number of random elements are represented as Bayesian net-
works. The approach is sensible, since the processes are considered in an recursive
manner. That is, one “constructs on the fly” an infinite Bayesian network, so that
after a finite number of recursions, the number of variables (nodes) in the Bayesian
network is finite. Such Bayesian networks are called in general dynamic Bayesian
networks [Murphy 2002].

B.2 Intuitive Interpretation

The BN graphs were stated to provide an intuitive manner of considering proba-
bilistic models. This section gives an intuitive interpretation, which many times
helps to grasp the ideas behind a model. The interpretation is to consider a BN
as a generative model.

Consider the case of discrete-valued random variables x1, . . . ,xn. To ob-
tain a sample x1 = x1(ω), . . . , xn = xn(ω), one can proceed as follows.

1. Find a random variable xi that is either a root (i.e. has no parent nodes2),
or whose parents have already been sampled.

2. Draw a sample from the conditional distribution of xi given the sampled
values of the parent nodes.

3. If all variables have not been sampled, go to step 1.
Again, an example will perhaps clarify this rather informally given procedure.
Consider the case in Figure B.1 (b). First a sample a is drawn corresponding
variable a. Then, a sample b corresponding b can be drawn according to P (b |
a = a), since the parent of b, namely a has been sampled. After that, sample c
corresponding c can be obtained according to P (c | a = a, b = b). Finally, d is
sampled according to P (d | c = c). The sample (a, b, c, d) obtained in this manner
is distributed according to the joint distribution P (a, b, c,d).

B.3 Inference

When talking about BNs, the computation of the posterior marginal distribution
for an element, or a set of elements, is referred to as inference. In brief, the
inference methods for BNs are all developed for random variables with finite
range. The inference algorithms are based on the idea that they find such parts in
the Bayesian networks, in which computations can be performed locally. Inference
in tree-based networks can be carried out using the algorithm due to Pearl [1988].
For other types of networks, the algorithms are based on a secondary graph called
the junction tree. For information on junction tree algorithms, see e.g. [Jensen
2001; Lauritzen and Spiegelhalter 1988; Madsen and Jensen 1999].

2. Such nodes, from which there is a directed edge towards a node, are the parent nodes.
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The Bayesian network inference algorithms can be implemented straight-
forwardly, if the BN consists of random variables with finite range. This is due
to the fact that the inference algorithms use a meta-operation “marginalisation”,
which is in general integration. In the case of random variables with finite range,
integration reduces into finite summation. On the other hand, analytical integra-
tion is often infeasible in the case of continuous distributions. Thus, exact infer-
ence in non-discrete BNs is in general infeasible. There exists several algorithms
for performing an approximate Bayesian network inference. Murphy [2002] gives
an excellent survey of the existing inference methods, and formulates a variety of
probabilistic models as dynamic Bayesian networks.


